PROBLEM SOLVING AND SEARCH

CHAPTER 3
Outline

◊ Problem-solving agents
◊ Problem types
◊ Problem formulation
◊ Example problems
◊ Basic search algorithms
Problem-solving agents

Restricted form of general agent:

```plaintext
function SIMPLE-PROBLEM-SOLVING-AGENT( percept ) returns an action
  static: seq, an action sequence, initially empty
          state, some description of the current world state
          goal, a goal, initially null
          problem, a problem formulation

  state ← UPDATE-STATE( state, percept )
  if seq is empty then
    goal ← FORMULATE-GOAL( state )
    problem ← FORMULATE-PROBLEM( state, goal )
    seq ← SEARCH( problem )
    action ← RECOMMENDATION( seq, state )
    seq ← REMAINDER( seq, state )
  return action
```

Note: this is offline problem solving; solution executed “eyes closed.”

Online problem solving involves acting without complete knowledge.
Agent Framework form Chapter 2

Where does the SIMPLE-PROBLEM-SOLVING-AGENT fit into the framework from Chapter 2?

◊ Static vs. dynamic
◊ Fully observable vs. partially observable
◊ Discrete vs. continuous
◊ Deterministic vs. stochastic
◊ Episodic vs. sequential
◊ Single agent vs. multiagent
◊ This is an 'Open Loop' system.
Example: Romania

On holiday in Romania; currently in Arad.
Flight leaves tomorrow from Bucharest

Formulate goal:
 be in Bucharest

Formulate problem:
 states: various cities
 actions: drive between cities

Find solution:
 sequence of cities, e.g., Arad, Sibiu, Fagaras, Bucharest
Example: Romania
A well-defined problem is defined by four items:

Initial state
E.g., “at Arad”

Successor function
\(S(x) = \) set of action–state pairs
E.g.,
\[
S(\text{Arad}) = \{\langle \text{Arad} \rightarrow \text{Zerind}, \text{Zerind} \rangle, \ldots \}
\]

Goal test, can be
Explicit, e.g., \(x = \) “at Bucharest”
Implicit, e.g., \(\text{NoSuccessors} \)

Path cost (additive)
E.g., sum of distances, number of actions executed, etc.
\(c(x, a, y) \) is the step cost, assumed to be \(\geq 0 \)

A solution is a sequence of actions
Leading from the initial state to a goal state
Selecting a state space

Real world is absurdly complex
 ⇒ state space must be abstracted for problem solving

(Abstract) state = set of real states

(Abstract) action = complex combination of real actions
 e.g., “Arad → Zerind” represents a complex set
 of possible routes, detours, rest stops, etc.
For guaranteed realizability, any real state “in Arad”
 must get to some real state “in Zerind”

(Abstract) solution =
 set of real paths that are solutions in the real world

Each abstract action should be “easier” than the original problem!
Example: vacuum world state space graph

states??
actions??
goal test??
path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)
actions??
goal test??
path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt *amounts* etc.)

actions??: *Left, Right, Suck, NoOp*

goal test??

path cost??
Example: vacuum world state space graph

states??: integer dirt and robot locations (ignore dirt amounts etc.)

actions??: Left, Right, Suck, NoOp

goal test??: no dirt

path cost??
Example: vacuum world state space graph

states: integer dirt and robot locations (ignore dirt amounts etc.)

actions: *Left, Right, Suck, NoOp*

goal test: no dirt

path cost: 1 per action (0 for *NoOp*)

Chapter 3 13
Example: The 8-puzzle

Start State

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

states??
actions??
goal test??
path cost??
Example: The 8-puzzle

Start State

Goal State

states: integer locations of tiles (ignore intermediate positions)

actions

goal test

path cost
Example: The 8-puzzle

Start State

<table>
<thead>
<tr>
<th>7</th>
<th>2</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Goal State

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td></td>
</tr>
</tbody>
</table>

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??
path cost??
Example: The 8-puzzle

7 2 4
5 6
8 3 1

Start State

1 2 3
4 5 6
7 8

Goal State

states??: integer locations of tiles (ignore intermediate positions)

actions??: move blank left, right, up, down (ignore unjamming etc.)

goal test??: = goal state (given)

path cost??
Example: The 8-puzzle

states??: integer locations of tiles (ignore intermediate positions)
actions??: move blank left, right, up, down (ignore unjamming etc.)
goal test??: = goal state (given)
path cost??: 1 per move

[Note: optimal solution of \(n \)-Puzzle family is NP-hard]
Example: robotic assembly

states: real-valued coordinates of robot joint angles
 parts of the object to be assembled

actions: continuous motions of robot joints

goal test: complete assembly with no robot included!

path cost: time to execute
Tree search algorithms

Basic idea:
offline, simulated exploration of state space
by generating successors of already-explored states
(a.k.a. expanding states)

function Tree-Search(problem, strategy) returns a solution, or failure
 initialize the search tree using the initial state of problem
 loop do
 if there are no candidates for expansion then return failure
 choose a leaf node for expansion according to strategy
 if the node contains a goal state then return the corresponding solution
 else expand the node and add the resulting nodes to the search tree
 end
Tree search example
Tree search example

Arad

Sibiu

Timisoara

Zerind

Arad

Fagaras

Oradea

Rimnicu Vilcea

Arad

Lugoj

Arad

Oradea
Tree search example

```
Chapter 3

Arad
  /   \
Sibiu  Timisoara
   |     |
Arad  Oradea  Arad
    |       |         |
Sibiu  Fagaras  Oradea  Rimnicu Vilcea
         |       |
Arad  Lugoj  Oradea
         |
Zerind
```
Implementation: states vs. nodes

A state is a (representation of) a physical configuration.

A node is a data structure constituting part of a search tree that includes parent, children, depth, and path cost $g(x)$.

States do not have parents, children, depth, or path cost!

The Expand function creates new nodes, filling in the various fields and using the SuccessorFn of the problem to create the corresponding states.
function Tree-Search(\(problem, fringe\)) returns a solution, or failure

\(fringe \leftarrow \text{INSERT} (\text{MAKE-NODE} (\text{INITIAL-STATE}[\text{problem}]), fringe) \)

loop do
 if \(fringe \) is empty then return failure
 node \leftarrow \text{REMOVE-FRONT}(fringe)
 if Goal-Test(\(problem, \text{STATE}(node)\)) then return node
 \(fringe \leftarrow \text{INSERT-ALL} (\text{EXPAND}(node, problem), fringe) \)

function Expand(\(node, problem\)) returns a set of nodes

\(successors \leftarrow \text{the empty set} \)

for each action, result in Successor-Fn(\(problem, \text{STATE}(node)\)) do
 \(s \leftarrow \text{a new NODE} \)
 \(\text{PARENT-NODE}[s] \leftarrow node; \text{ACTION}[s] \leftarrow action; \text{STATE}[s] \leftarrow result \)
 \(\text{PATH-COST}[s] \leftarrow \text{PATH-COST}[node] + \text{STEP-COST}(\text{STATE}[node], action, result) \)
 \(\text{DEPTH}[s] \leftarrow \text{DEPTH}[node] + 1 \)
 add \(s \) to \(successors \)

return \(successors \)
A strategy is defined by picking the **order of node expansion**

Strategies are evaluated along the following dimensions:
- **completeness**—does it always find a solution if one exists?
- **time complexity**—number of nodes generated/expanded
- **space complexity**—maximum number of nodes in memory
- **optimality**—does it always find a least-cost solution?

Time and space complexity are measured in terms of
- b—maximum branching factor of the search tree
- d—depth of the least-cost solution
- m—maximum depth of the state space (may be ∞)
Uninformed search strategies

Uninformed strategies use only the information available in the problem definition

Breadth-first search

Uniform-cost search

Depth-first search

Depth-limited search

Iterative deepening search
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Breadth-first search

Expand shallowest unexpanded node

Implementation:

fringe is a FIFO queue, i.e., new successors go at end
Properties of breadth-first search

Complete??
Properties of breadth-first search

Complete?? Yes (if \(b \) is finite)

Time??
Properties of breadth-first search

Complete? Yes (if b is finite)

Time? $1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1})$, i.e., exp. in d

Space?
Properties of breadth-first search

Complete? Yes (if \(b \) is finite)

Time? \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}), \) i.e., exp. in \(d \)

Space? \(O(b^{d+1}) \) (keeps every node in memory)

Optimal?
Properties of breadth-first search

Complete Yes (if \(b \) is finite)

Time \(1 + b + b^2 + b^3 + \ldots + b^d + b(b^d - 1) = O(b^{d+1}) \), i.e., exp. in \(d \)

Space \(O(b^{d+1}) \) (keeps every node in memory)

Optimal Yes (if cost = 1 per step); not optimal in general

Space is the big problem; can easily generate nodes at 100MB/sec so 24hrs = 8640GB.
Uniform-cost search

Expand least-cost unexpanded node

Implementation:

fringe = queue ordered by path cost, lowest first

Equivalent to breadth-first if step costs all equal

Complete?? Yes, if step cost $\geq \epsilon$

Time?? # of nodes with $g \leq$ cost of optimal solution, $O(b^{C^*/\epsilon})$

where C^* is the cost of the optimal solution

Space?? # of nodes with $g \leq$ cost of optimal solution, $O(b^{C^*/\epsilon})$

Optimal?? Yes—nodes expanded in increasing order of $g(n)$
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

```
A
/|
B C
/|
D E
/|
H I J K
/|
L M
/|
N O
```
Depth-first search

Expand deepest unexpanded node

Implementation:

$fringe = \text{LIFO queue, i.e., put successors at front}$
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front

![Diagram of a tree](image)
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \text{LIFO queue, i.e., put successors at front} \)
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe\) = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Depth-first search

Expand deepest unexpanded node

Implementation:

\[\text{fringe} = \text{LIFO queue, i.e., put successors at front}\]
Depth-first search

Expand deepest unexpanded node

Implementation:

\(fringe = \text{LIFO queue, i.e., put successors at front} \)
Depth-first search

Expand deepest unexpanded node

Implementation:

fringe = LIFO queue, i.e., put successors at front
Properties of depth-first search

Complete??
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time??
Properties of depth-first search

Complete
No: fails in infinite-depth spaces, spaces with loops
Modify to avoid repeated states along path
⇒ complete in finite spaces

Time
$O(b^m)$: terrible if m is much larger than d
but if solutions are dense, may be much faster than breadth-first

Space
Properties of depth-first search

Complete? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time? $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space? $O(bm)$, i.e., linear space!

Optimal?
Properties of depth-first search

Complete?? No: fails in infinite-depth spaces, spaces with loops
 Modify to avoid repeated states along path
 ⇒ complete in finite spaces

Time?? $O(b^m)$: terrible if m is much larger than d
 but if solutions are dense, may be much faster than breadth-first

Space?? $O(bm)$, i.e., linear space!

Optimal?? No
Depth-limited search

= depth-first search with depth limit \(l \),
i.e., nodes at depth \(l \) have no successors

Recursive implementation:

```plaintext
function Depth-Limited-Search(problem, limit) returns soln/fail/cutoff
  DLS(Make-Node(Initial-State[problem]), problem, limit)

function DLS(start-node, problem, limit) returns soln/fail/cutoff
  Push(start-node, Stack-S)
  while (Stack-S is NOT empty)
    C ← Pop(Stack-S)
    if Goal-Test(problem, State[C]) then return node
    if Depth(C) < limit
      for each successor in Expand(node, problem) do
        Push(node, Stack-S)
```

Chapter 3
function Iterative-Deepening-Search(problem) returns a solution
inputs: problem, a problem

for depth ← 0 to ∞ do
 result ← Depth-Limited-Search(problem, depth)
 if result ≠ cutoff then return result
end
Iterative deepening search \(l = 0 \)
Iterative deepening search $l = 1$
Iterative deepening search $l = 2$

Limit = 2
Iterative deepening search \(l = 3 \)

Limit = 3
Properties of iterative deepening search

Complete??
<table>
<thead>
<tr>
<th>Properties of iterative deepening search</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
</tr>
<tr>
<td>Time</td>
</tr>
</tbody>
</table>
Properties of iterative deepening search

Complete?? Yes

Time?? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space??
Properties of iterative deepening search

Complete?? Yes

Time?? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space?? \(O(bd)\)

Optimal??
Properties of iterative deepening search

Complete? Yes

Time? \((d + 1)b^0 + db^1 + (d - 1)b^2 + \ldots + b^d = O(b^d)\)

Space? \(O(bd)\)

Optimal? Yes, if step cost = 1

Can be modified to explore uniform-cost tree

Numerical comparison for \(b = 10\) and \(d = 5\), solution at far right leaf:

\[
N(\text{IDS}) = 50 + 400 + 3,000 + 20,000 + 100,000 = 123,450 \\
N(\text{BFS}) = 10 + 100 + 1,000 + 10,000 + 100,000 + 999,990 = 1,111,100
\]

IDS does better because other nodes at depth \(d\) are not expanded

BFS can be modified to apply goal test when a node is generated
Summary of algorithms

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Breadth-First</th>
<th>Uniform-Cost</th>
<th>Depth-First</th>
<th>Depth-Limited</th>
<th>Iterative Deepening</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete?</td>
<td>Yes*</td>
<td>Yes*</td>
<td>No</td>
<td>Yes, if $l \geq d$</td>
<td>Yes</td>
</tr>
<tr>
<td>Time</td>
<td>b^{d+1}</td>
<td>$b^{[C^*/\epsilon]}$</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
</tr>
<tr>
<td>Space</td>
<td>b^{d+1}</td>
<td>$b^{[C^*/\epsilon]}$</td>
<td>b^m</td>
<td>b^l</td>
<td>b^d</td>
</tr>
<tr>
<td>Optimal?</td>
<td>Yes*</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes*</td>
</tr>
</tbody>
</table>

Chapter 3 66
Repeated states

Failure to detect repeated states can turn a linear problem into an exponential one!
function **Graph-Search** (problem, fringe) returns a solution, or failure

- closed ← an empty set
- fringe ← INSERT(Make-Node(Initial-State[problem]), fringe)

loop do

 if fringe is empty then return failure

 node ← REMOVE-FRONT(fringe)

 if GOAL-TEST(problem, State[node]) then return node

 if State[node] is not in closed then

 add State[node] to closed

 fringe ← INSERTALL(EXPAND(node, problem), fringe)

end
Summary

Problem formulation usually requires abstracting away real-world details to define a state space that can feasibly be explored.

Variety of uninformed search strategies.

Iterative deepening search uses only linear space and not much more time than other uninformed algorithms.

Graph search can be exponentially more efficient than tree search.