
Page | 1

UCF “ Practice” Local Contest — Aug 27, 2016

Binarize It
filename: binarize

(Difficulty Level: Easy)

Professor Boolando can only think in binary, or more specifically, in powers of 2. He converts
any number you give him to the smallest power of 2 that is equal to or greater than your number.
For example, if you give him 5, he converts it to 8; if you give him 100, he converts it to 128; if
you give him 512, he converts it to 512.

The Problem:

Given an integer, your program should binarize it.

The Input:

The first input line contains a positive integer, n, indicating the number of values to binarize.
The values are on the following n input lines, one per line. Each input will contain an integer
between 2 and 100,000 (inclusive).

The Output:

At the beginning of each test case, output “Input value: v” where v is the input value.
Then, on the next output line, print the binarized version. Leave a blank line after the output for
each test case.

Sample Input:

3
900
16
4000

Sample Output:

Input value: 900
1024

Input value: 16
16

Input value: 4000
4096

Page | 2

UCF “Practice” Local Contest — Aug 27, 2016

g2g c u l8r
filename: texting

(Difficulty Level: Easy)

According to the national statistics, a teenager sends/receives 100+ text messages a day. Dr.
Orooji’s teenage children are no exception but the problem is Dr. O (an old-fashioned, face-to-
face communicator) has difficulty reading text messages full of abbreviations (short-hands) sent
to him by his children. Dr. O needs your help reading these text messages.

The Problem:

Given the list of abbreviations and a paragraph, you are to expand the text (paragraph) so that Dr.
O can read it easily.

The Input:

The first input line contains an integer, n (1 ≤ n ≤ 20), indicating the number of abbreviations.
These abbreviations are on the following n input lines, one per line. Each input line starts in
column 1 and contains an abbreviation (1-5 characters, consisting of only lowercase letters and/or
digits). The abbreviation is followed by exactly one space, and this is followed by the expanded
version of the abbreviation (1-50 characters, consisting of only lowercase letters and spaces;
assume the expanded version does not start or end with a space and contains no multiple
consecutive spaces between words). Assume that all abbreviations are distinct, i.e., no
duplicates.

The list of abbreviations is followed by a positive integer, p, indicating the number of input lines
containing the paragraph to be expanded. The paragraph is on the following p input lines.
Assume these input lines do not exceed column 50, do not start or end with a space, and each line
contains at least one word. The paragraph will contain only lowercase letters, digits, and spaces.
Assume that there will not be multiple consecutive spaces in the input paragraph.

A word is defined as a consecutive sequence of letters/digits. Assume that a word will be
entirely on one input line, i.e., a word is not broken over two or more lines.

The Output:

Each line of the input paragraph must be on one line of output. The input line must be printed in
the output exactly the same (spacing). The only exception is that each abbreviation must be
replaced by its expanded version, i.e., when an abbreviation is found in the input, its expanded
version must be output.

Note that an abbreviation must match a word completely and not just part of a word. For
example, if u is an abbreviation for “you”, then u must appear as a word by itself in the paragraph

Page | 3

in order to be replaced, i.e., if the abbreviation is part of a word in the paragraph (e.g., the
paragraph contains the word buy or ugly or you), the u in these words should not be replaced.

Sample Input:

8
g2g got to go
g good
c see
l8 late
l8r later
d i am done
u you
r are
6
hi
how r u
you tell me
you are l8
d
c u l8r

Sample Output:

hi
how are you
you tell me
you are late
i am done
see you later

Page | 4

UCF “Practice” Local Contest — Aug 27, 2016

Tip to be Palindrome
filename: tipit

(Difficulty Level: Easy)

One of the cool UCF CS alumni is Dr. Greg, The Palindrome Tipper. A palindrome is a string
that reads the same forward and backward, e.g., madam, abba, 3, 44, 525.

One cool thing about Dr. Greg is that he leaves at least 20% tip when he eats out, e.g., if the meal
is $30, Dr. Greg leaves $6 (30*.20) for tip. If the tip (20%) is not a whole dollar amount, he
rounds up the tip to make it a whole number. For example, if the meal is $12, a 20% tip would
be $2.40 (12*0.20) but Dr. Greg would leave $3 for tip.

Another cool thing about Dr. Greg is that he is a palindrome guru. If his total bill (meal plus tip)
is not a palindrome, he will increase the total (by adding to the tip) to make the total a
palindrome. He will, of course, add the minimum needed to make the total a palindrome.

The Problem:

Given Dr. Greg’s meal cost, your program should determine the tip amount for him (according to
his rules) and the total bill.

The Input:

The first input line contains a positive integer, n, indicating the number of times Dr. Greg ate out.
The meal costs are on the following n input lines, one per line. Each input will contain an integer
between 5 and 10000 (inclusive).

The Output:

At the beginning of each test case, output “Input cost: c” where c is the input cost. Then,
on the next output line, print the tip amount and the total bill, separated by one space. Leave a
blank line after the output for each test case.

Sample Input:

2
12
84

Sample Output:

Input cost: 12
10 22

Input cost: 84
17 101

Page | 5

UCF “Practice” Local Contest — Aug 27, 2016

Soccer Standings
filename: soccer

(Difficulty Level: Medium)

Soccer fever has gripped the world once again, and millions of people from dozens of countries
will be glued to their TV sets for the World Cup. Being an enterprising sort, you’ve started up
your own internet World Cup Soccer Channel for streaming matches online. Recently you came
up with the idea of filling up the time between matches by having a couple of ‘experts’ offer
critical analysis of games. For this purpose, you have devised a unique ranking system for soccer
teams, which you must now implement.

The Problem:

Given a list of teams and a list of match scores, you must compute several quantities for each
team. These are: the total number of goals scored over all their games, the total number of goals
scored against them (goals allowed, for short), the number of wins, draws and losses, and the
number of points scored so far. Points are to be computed as follows: winning a match nets a
team 3 points, losing gets them nothing. In the event of a tie, both teams get 1 point.

In addition to this, you must order the teams correctly according to your new system. Teams are
ordered according to points, from highest to lowest. In the event of a tie in points, the team that
has a higher goal difference comes first. The goal difference is defined as the total number of
goals scored by the team minus the total number of goals scored against them.

If there is still a tie (i.e., two or more teams have the same points and the same goal differences),
the team with higher total goals scored comes first. If even this is tied, the team whose name
comes first in alphabetical order goes first.

The Input:

The first input line contains a positive integer, n, indicating the number of data sets to be
processed. The first line of each data set consists of two positive integers T (T ≤ 30) and G (G ≤
400) – the number of teams in this group and the total number of games played by them. The
next line contains T unique names separated by single spaces. Each name is a single uppercase
word with no more than 15 characters.

Each of the next G input lines will contain the results of a match. Each line is of the form
<country_1> <score_1> <country_2> <score_2>. For example, “Greece 2 Nigeria 1”
indicates that Greece and Nigeria played a game with score 2-1. All four terms will be separated
by single spaces.

Page | 6

The Output:

At the beginning of output for each data set, output “Group g:” where g is the data set
number, starting from 1. Next you should print a single line for each team, ordering teams as
mentioned above. For each team, the line you print should be of the form “<name> <points>
<wins> <losses> <draws> <goals scored> <goals allowed>”. These items should be
separated by single spaces. Leave a blank line after the output for each data set.

Sample Input:

2
2 1
KASNIA LATVERIA
KASNIA 0 LATVERIA 1
4 6
ENGLAND USA ALGERIA SLOVENIA
ENGLAND 1 USA 1
ALGERIA 0 SLOVENIA 1
SLOVENIA 2 USA 2
ENGLAND 0 ALGERIA 0
SLOVENIA 0 ENGLAND 1
USA 1 ALGERIA 0

Sample Output:

Group 1:
LATVERIA 3 1 0 0 1 0
KASNIA 0 0 1 0 0 1

Group 2:
USA 5 1 0 2 4 3
ENGLAND 5 1 0 2 2 1
SLOVENIA 4 1 1 1 3 3
ALGERIA 1 0 2 1 0 2

Page | 7

UCF “Practice” Local Contest — Aug 27, 2016

NIH Budget
filename: nih

(Difficulty Level: Medium)

Recently, a job for an algorithms specialist opened up at NIH. You never thought you’d be using
your expertise in algorithms to save lives, but now, here is your chance! While the doctors are
very good in carrying out medical research and coming up with better cures for diseases, they are
not so good with numbers. This is where you come in.

You have been tasked to allocate money for all disease research at NIH. The interesting thing
about disease research is that the number of lives saved doesn’t linearly increase with the amount
of money spent, in most cases. Instead, there are “break-points”. For example, it might be the
case that for disease A, we have the following break-points:

Research Funding Lives Saved
10 million 5
50 million 100
100 million 1000
250 million 1100

If you spend more money than one breakpoint and less than another, the number of lives saved is
equal to the amount saved for the previous breakpoint. (In the above example, if you spent $150
million, you’d still only save 1000 lives, and if you spent any amount more than $250 million,
you’d still save 1100 lives.)

The doctors have figured out charts just like this one for all the diseases for which they do
research. Given these charts, your job will be to maximize the number of lives saved spending
no more than a particular budget.

The Problem:

Given several charts with information about how much has to be spent to save a certain number
of lives for several diseases and a maximum amount of money you can spend, determine the
maximum number of lives that can be saved.

The Input:

The first input line contains a positive integer, n (n ≤ 100), indicating the number of budgets to
consider. The first line of each budget contains two positive integers, d (d ≤ 10), representing the
number of diseases for which there is data and B (B ≤ 100000), the total budget, in millions of
dollars. The following d lines contain information about each of the d diseases. Each of these
lines will contain exactly four ordered pairs of positive integers separated by spaces. Each pair
will represent a dollar level (in millions) followed by the number of lives saved for that dollar

Page | 8

level of funding. Each of the pairs will be separated by spaces as well. Each of these values will
be less than or equal to 100,000. Assume that the dollar levels on an input line are distinct and in
increasing order, and that the number of lives saved on an input line are also distinct and in
increasing order.

The Output:

For each test case, just output a line with the following format:

Budget #k: Maximum of x lives saved.

where k is the number of the budget, starting at 1, and x is the maximum number of lives saved in
that budget.

Leave a blank line after the output for each test case.

Sample Input:

3
2 2000
10 5 50 100 100 1000 250 1100
100 1 200 2 300 3 1900 1000
3 100
10 100 40 200 70 300 100 500
5 1 25 2 35 3 50 4
200 10000 300 20000 400 30000 500 40000
1 10
100 2 200 3 300 5 400 6

Sample Output:

Budget #1: Maximum of 2000 lives saved.

Budget #2: Maximum of 500 lives saved.

Budget #3: Maximum of 0 lives saved.

Page | 9

UCF “Practice” Local Contest — Aug 27, 2016

Interstellar Love
filename: stars

(Difficulty Level: Medium)

After two years of sharing a bedroom with you in a college dorm, Jeff finally has his own room.
Excited about inviting girls over to his room, he ponders over what decorations the fairer sex will
enjoy.1 He decides upon setting up a “fake” planetarium with a black ceiling and glow in the
dark stars that form constellations. Unfortunately, in his haste, he has made several “errors” in
setting up his constellations. See, everyone knows that constellations don’t have cycles in them.
Instead, whenever we visually connect the stars together with lines, a tree is always formed. (A
cycle is formed when you can start at a star and, using connections, go to one or more other stars
and then end up at the original star.)

Since you were Jeff’s roommate for two years, you figure you’ll help him fix his constellations.
Your job will be twofold: to count the number of constellations Jeff has, and to report how many
of them have cycles and need to be fixed. A constellation consists of multiple stars that are all
connected to one another (directly or indirectly). A constellation that needs fixing is simply one
that has a cycle.

The Problem:

Given several configurations of stars and connections between stars, determine how many
constellations are defined in each configuration and how many need fixing.

The Input:

The first input line contains a positive integer, n (n ≤ 100), indicating the number of night skies
to consider. The first line of each night sky contains two positive integers, s (s ≤ 1000),
representing the number of stars for this night sky, and c (c ≤ 10000), representing the total
number of connections between pairs of stars for this night sky. Each of the following c input
lines contains two distinct positive integers representing a single connection between two stars.
The stars in each test case will be numbered 1 through s, inclusive. A connection is considered
bidirectional, thus, if a is connected to b, b is connected to a. Assume that all connections in a
data set are distinct, i.e., no duplicates. Also assume that there will never be a connection from a
star to itself.

1 This is based on a true story. The person who is the inspiration for this story did, in fact, major in Planetary
Science and make his room’s ceiling a relatively accurate depiction of the night sky, as seen in Boston circa 1995.

Page | 10

The Output:

For each test case, just output a line with the following format:

Night sky #k: X constellations, of which Y need to be fixed.

where k is the number of the night sky, starting at 1, X is the total number of constellations
described in that night sky, and Y is how many of those constellations contain a cycle.

Leave a blank line after the output for each test case.

Sample Input:

3
5 4
1 2
1 3
2 3
4 5
8 5
1 2
3 4
6 7
6 8
8 7
3 2
1 2
1 3

Sample Output:

Night sky #1: 2 constellations, of which 1 need to be fixed.

Night sky #2: 3 constellations, of which 1 need to be fixed.

Night sky #3: 1 constellations, of which 0 need to be fixed.

Note: In the second example, star number 5 is not connected to any other stars. This star
on its own is NOT counted as a constellation, leaving only {1,2}, {3,4} and {6,7,8} as
constellations, of which only the last one needs to be fixed.

Page | 12

(Picture from Firefighternation.com)

UCF “Practice” Local Contest — Aug 27, 2016

Plate Spinning
filename: plate

(Difficulty Level: Medium)

Plate spinning is a circus act where a person spins various objects
(usually plates and bowls) on poles without them falling off. It
involves spinning an object and then returning back to the object in
order to add additional speed to prevent it from falling off the pole.

In this problem you will simulate plate spinning where the plates are
placed in a circular arrangement (much like the picture to the right).
You must determine whether Chester the Clown will be able to
maintain the plates spinning or whether one or more plates will end
up falling off poles.

The Problem:

Given the number of poles/plates in a circular arrangement and the speed up to which Chester the
Clown spins the plates (in degrees per second), determine if he can maintain the act or if plates
will fall. For this problem, we will assume that plates degrade (slow down) at a constant rate of
5-degrees-per-second per second and that Chester can move from one pole to any other pole in
0.5 seconds. In addition, assume that Chester can spin up a plate with zero time cost.

A plate falls off when its rate is zero. However, if Chester arrives at a plate exactly at the same
time the rate reaches zero, Chester will spin the plate and prevents it from falling, i.e., the rate
must reach zero before Chester arrives for the plate to fall.

The Input:

The first line of the input will be a single positive integer, a, representing the number of acts to
evaluate. Each of the following a lines will represent a single act and will contain two positive
integers, n and p, separated by a single space, where n represents the number of poles (1 ≤ n ≤
15) and p represents the speed up to which Chester spins a plate (0 < p ≤ 100) in degrees per
second. At the very beginning of each act, all plates are initially spinning at this speed, and he is
currently at a plate in the circle (he can choose which plate to start at in order to maximize his
chance of success).

Page | 12

The Output:

For each circus act, output a header “Circus Act i:” on a line by itself where i is the number

of the act (starting with 1). Then, on the next line, output “Chester can do it!” if

Chester can maintain the act, or output “Chester will fail!” if one or more plates will
fall. Leave a blank line after the output for each test case.

Sample Input:

3
2 10
5 7
2 12

Sample Output:

Circus Act 1:
Chester can do it!

Circus Act 2:
Chester will fail!

Circus Act 3:
Chester can do it!

Page | 13

UCF “Practice” Local Contest — Aug 27, 2016

The Eternal Quest for Caffeine
filename: soda

(Difficulty Level: Hard)

Like most engineering students, Jason relies on caffeine, soda in particular, to get him through
long nights in the lab. He’s not too picky about the brand; as long as it’s fizzy, loaded with
caffeine, and not the “diet” version, he’s happy. When the new Harris Engineering Center
opened on the UCF Campus, he was pleased to see a soda machine on every floor. Not just any
soda machine, either. These machines are the fancy kind that display all of the soda stock
arranged in rows stacked on top of each other (like most snack machines). When a soda is
purchased, a conveyor belt rises to the correct row, where the soda is surgically picked up by a
robotic clasp that can travel left and right on the conveyor. The conveyor then descends to the
vending slot, where the clasp gently deposits the soda. Finally, the slot unlocks and tilts forward,
allowing the buyer to retrieve his or her soda. Engineering perfection! And as a bonus, the soda
isn’t subjected to all the usual mechanical clatter that causes it to fizz over when it’s opened.

Unfortunately, these elaborate machines seem to have a propensity for component failure. On
one soda mission from his lab, Jason discovered that the vending slot was broken on the machine
on his floor, which prevented it from working altogether. He went to the next floor down and
saw that that machine’s vending slot was fine, but the conveyor was broken. He went down to
the ground floor and saw that that machine was in perfect order, but only had caffeine free diet
soda! At this point, Jason devised a plan. It’s a simple matter for him to open up the working
machine and harvest the parts he needs for the machine upstairs, then to hike back upstairs and
repair the machine that houses the soda he needs. Sure, he could just take the soda he wants
while the machine is open, but what fun would that be?

The one issue with this plan is that while Jason does enjoy the engineering challenge, he hates
the walking between various broken machines each time he goes to get a coke, so he’s asked you,
a computer science student and fellow resident of the Harris Engineering Center to help. He can
devise a way to monitor each machine in the building and ascertain what parts are working. He
needs you to write a program that will allow him to get all the parts he needs from the various
machines in the building, traveling up and down as few flights of stairs as possible (he doesn’t
trust the elevators because he’s never been allowed to see how they work). Assume he can carry
an unlimited number of parts. He also wants this algorithm to work for various kinds of coke
machines and various buildings, in case the vendors decide to change out their machines one day,
or the administration decides to relocate the EECS department again (you still can assume that
there will always be exactly one coke machine on each floor).

The Problem:

Given the number of floors in the building, the number of parts required for a working machine,
a description of the working parts in each machine in the building, and whether or not each
machine has the desired kind of soda, determine the smallest number of floor changes required to

Page | 14

assemble a working machine that is already stocked with the desired soda. Jason will always
start from his lab and return there after getting his soda.

The Input:

There will be multiple soda machine arrangements to process. Input will begin with three
integers, N, F, and P (1 ≤ N,F,P ≤ 10), each separated by a single space with no leading or
trailing spaces. N describes the number of floors in the building, F indicates which floor Jason’s
lab is on, and P indicates the number of different parts in each of the building’s soda machines.

On the next N lines will be a set of integers followed by a single letter. Each line describes the
soda machine on one floor (starting with the ground floor, and proceeding upward in order). The
characters on a line are separated by a single space, with no leading or trailing spaces. The first
integers on each line will be S (0 ≤ S ≤ P), indicating the number of working parts in the
machine. S integers will follow, each indicating a working part in the machine (each of these
integers will be unique and will be between 1 and P). Finally, there will be a single character “Y”
or “N”, where “Y” indicates that the machine has a kind of soda that Jason likes, and “N”
indicates that it does not.

End of input will be indicated by a value of 0 for N, F, and P. This case should not be processed.

The Output:

For each soda machine arrangement, print the case number (starting with 1) and a single integer
indicating the minimum number of times Jason will have to travel up or down a staircase to
collect the parts he needs to repair a soda machine, get a soda that he wants, and return to his lab.
If there is no way for Jason to get a soda, print “Impossible” instead of the integer. Leave a
blank line after the output for each test case.

Sample Input:

4 2 5
5 1 2 3 4 5 N
4 1 2 3 5 Y
4 1 2 4 5 Y
5 1 2 3 4 5 Y
4 2 6
1 1 Y
2 2 3 Y
3 1 4 5 Y
0 Y
0 0 0

Sample Output:

Test case #1: 2

Test case #2: Impossible

Page | 15

UCF “Practice” Local Contest — Aug 27, 2016

Pegasus Circle Shortcut
filename: shortcut

(Difficulty Level: Hard)

For the UCF High School Programming Tournament, the judges were located in the Engineering
building, and most of the teams were in the Classroom building, which is on the other side of
Pegasus Circle.

Chris was walking to the Classroom building for the first time, and was joined by Jeremy, who
had made the hike a couple of times already.

“Jeremy, is it faster to stay on the circle, or to cut through the middle using the
boardwalks that go to the Student Union?” asked Chris.

“I don’t know.” Jeremy answered. “I think it’s about the same, but it might be slightly
faster to use the walkways.”

“Well, if it’s about the same, let’s stick to the circle. I don’t want to be attacked by
squirrels.”*

The Problem:

Given two points on a circle, and two paths to get from one to the other—one following the
perimeter of the circle, and the other by a sequence of connected straight line segments through
the interior of the circle—determine the shorter of the two paths.

* No guarantee is made that these are exact quotes. Also, Chris is not really afraid of squirrels.

Page | 16

The Input:

The input will contain multiple test cases, each consisting of two lines. The first line of each test
case contains six floating-point numbers: xc, yc, xs, ys, xf, and yf, where (xc, yc) is the center
point of the circle, (xs, ys) is the start point for both paths (e.g., the Engineering building), and
(xf, yf) is the finish point for both paths (e.g., the Classroom building). The circle will always
have a radius greater than 1, and the start and finish points are both guaranteed to be at distinct
points on its perimeter, with an accuracy of at least 3 places after the decimal. The path along the
perimeter is always in the direction counter-clockwise around the circle.

The second line of each test case will start with an integer, n (1 ≤ n ≤ 10), followed by n pairs of
floating-point numbers, x1, y1, x2, y2, … xn, and yn, where each pair (xi, yi) is a point inside the
circle. The interior path traveled will be from point (xs, ys) to point (x1, y1), then from (x1, y1) to
(x2, y2), then from (x2, y2) to (x3, y3), …, then from (xn, yn) to (xf, yf).

The last test case will be followed by a line containing six zeros. All numbers on an input line
will be separated from each other by one space, with no extra spaces at the beginning or end of
lines. Assume that all the input floating point numbers will be less than 1000.0 and greater than
-1000.0, with at most 6 places after the decimal.

The Output:

For each test case in the input, output a line in either the format
Case #n: Stick to the Circle.
if the perimeter path is shorter, or
Case #n: Watch out for squirrels!
if the interior path is shorter, where n is the number of the input test case, starting at 1.
Assume that the two paths will not be equal, i.e., it is guaranteed that the two distances will not
be equal. In particular, assume that the two paths will differ in length by 0.001 or more.

Leave a blank line after the output for each test case.

Sample Input:

5.0 5.0 10.0 5.0 5.0 10.0
6 8.5 4.7 6.9 5.0 3.6 6.5 4.2 7.1 4.2 8.3 4.7 8.8
2.0 8.0 0.5 16.87412 7.5 0.8761
2 3.25 9.25 7.0 7.0
0 0 0 0 0 0

Sample Output:

Case #1: Stick to the Circle.

Case #2: Watch out for squirrels!

Page | 17

UCF “Practice” Local Contest — Aug 27, 2016

Lowest Common Ancestor
filename: lca

(Difficulty Level: Hard)

Perfect binary trees are one of the coolest structures that computer scientists study. They have a
lot of properties that make them very nice to work with. One of the nicest properties is that they
can just be described by a single integer n giving the depth of the tree. For instance, the perfect
binary tree for n = 3 looks like:

In general, a perfect binary tree with depth n will have exactly 2n+1 – 1 nodes, and can be
numbered by following the pattern seen above (there are of course other ways to number the
nodes of the tree, but this is the scheme we will use in this problem).

A common question that arises when dealing with trees is the query of the lowest common
ancestor (commonly called LCA) of two nodes in the tree. Formally, the LCA of x and y is the
node z of greatest depth in the tree such that z is an ancestor of x and y. Node a is an ancestor of
node c if c exists in the sub-tree rooted at node a. Notice that 1 is trivially a common ancestor of
any two nodes in the tree, but is not always the lowest common ancestor. For instance, the
common ancestors of nodes 7 and 12 are 1 and 3, and 3 is the LCA since it is the node of greatest
depth. The LCA of 2 and 13 is node 1, and the LCA of 5 and 11 is node 5. The definition of
LCA guarantees that the LCA of any two nodes will always be unique.

The Problem:

Given two nodes in the tree using the numbering scheme shown above, determine the LCA of the
two nodes.

Page | 18

The Input:

Input will begin with a positive integer, T ≤ 2∙106, indicating the number of test cases. This will
be followed by T test cases, each on a separate input line. Each test case will contain two space
separated integers, X and Y, represented in hexadecimal. X and Y will each contain at most 1000
characters from the set {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f}, where a-f represent 10-15, respectively.
You are to determine the LCA of X and Y.
Note: The hexadecimal (base 16) number dndn-1···d1d0 is converted to a decimal number (base
10) by the following formula: d0·160 + d1·161 + ··· + dn-1·16n-1 + dn·16n.

The Output:

For each case, output a single line:

Case #x: y

where x is the case number beginning with 1, and y is the LCA in hexadecimal with no leading
0’s. Leave a blank line after the output for each test case.

Sample Input:

7
7 c
2 d
b 5
10 11
a020fac a030ccf
12afcdb 12afcdc
100000000 fffffffff

Sample Output:

Case #1: 3

Case #2: 1

Case #3: 5

Case #4: 8

Case #5: 501

Case #6: 255f9b

Case #7: 1

