CSCI 338, First Midterm – February 10th, 2016 | Name | 50 | Na C | م المارة | Covered | | Class | | |----------------|----|---------------|--------------|--------------|-----|------------|--| | mame _ | | <i>110.</i> / | "VI(17) (0n) | UVWCOM | 1/1 | | | | · - | J | , – | • • • • • | Q0 - 0 - 0 p | | \bigcirc | | Question One. 15 points. Draw a state diagram for a 3-state NFA that recognizes 1*(0011*)*. Question Two. 15 points. Consider the DFA below. (b) What is Σ ? (c) What is δ ? (d) What is q₀? (e) What is F? Question Three. 20 points. Consider the GNFA below. Show the resulting GNFA when state q_1 original $$\rightarrow 50$$ $\stackrel{\leftarrow}{=} 30$ $\stackrel{=} 30$ $\stackrel{\leftarrow}{=} $\stackrel{=$ Question Four. 10 points. Consider converting an NFA that has 5 states to a DFA. - (a) What is the maximum number of states that the DFA could have? - (b) What is the minimum number of states that the DFA could have? $$\rightarrow \bigcirc^{20,1}$$ Question Five. 15 points. Use the pumping lemma to show that language $A = \{w \mid 1^m 01^n 01^{m+n}\}$ where m, n >= 1. P $$S = 101019 \quad S \in A \quad |S| \ge F$$ $$S = xyz \quad |xy| \le P \quad |y| > 0 \quad y = 1^{i}$$ $$xyyz = 101019 \quad |xy| \le P P$$ Question Six. 10 points. Write a regular expression that captures A = {w | w contains exactly three a's} over $\Sigma = \{a, b\}$. Question Seven. 15 points. Consider NFAs NFA₁ and NFA₂. NFA₁ has n_1 states (including f_1 accept states) and t_1 transitions. NFA₂ has n_2 states (including f_2 accept states) and t_2 transitions. (a) Consider NFA₃, that is constructed to recognize NFA₁ U NFA₂ (union) using the construction technique in the book. How many **total states** will NFA₃ have? (b) How many transitions will NFA₃ have? (c) Consider NFA₄, that is constructed to recognize NFA₁ \cdot NFA₂ (concatenation) using the construction technique in the book. How many **accept states** will NFA₄ have? (d) Have many transitions will NFA4 have?