CSCI 338, First Midterm – February 10th, 2016

Name	50	Na C	م المارة	Covered		Class	
mame _		<i>110.</i> /	"VI(17) (0n)	UVWCOM	1/1		
· -	J	, –	• • • • •	Q0 - 0 - 0 p		\bigcirc	

Question One. 15 points. Draw a state diagram for a 3-state NFA that recognizes 1*(0011*)*.

Question Two. 15 points. Consider the DFA below.

(b) What is Σ ?

(c) What is δ ?

(d) What is q₀?

(e) What is F?

Question Three. 20 points. Consider the GNFA below. Show the resulting GNFA when state q_1

original
$$\rightarrow 50$$
 $\stackrel{\leftarrow}{=} 30$ $\stackrel{=} 30$ $\stackrel{\leftarrow}{=} 30$ $\stackrel{=$

Question Four. 10 points. Consider converting an NFA that has 5 states to a DFA.

- (a) What is the maximum number of states that the DFA could have?
- (b) What is the minimum number of states that the DFA could have?

$$\rightarrow \bigcirc^{20,1}$$

Question Five. 15 points. Use the pumping lemma to show that language $A = \{w \mid 1^m 01^n 01^{m+n}\}$

where m, n >= 1. P

$$S = 101019 \quad S \in A \quad |S| \ge F$$

$$S = xyz \quad |xy| \le P \quad |y| > 0 \quad y = 1^{i}$$

$$xyyz = 101019 \quad |xy| \le P \quad |xy| \le P$$

Question Six. 10 points. Write a regular expression that captures A = {w | w contains exactly three a's} over $\Sigma = \{a, b\}$.

Question Seven. 15 points. Consider NFAs NFA₁ and NFA₂. NFA₁ has n_1 states (including f_1 accept states) and t_1 transitions. NFA₂ has n_2 states (including f_2 accept states) and t_2 transitions.

(a) Consider NFA₃, that is constructed to recognize NFA₁ U NFA₂ (union) using the construction technique in the book. How many **total states** will NFA₃ have?

(b) How many transitions will NFA₃ have?

(c) Consider NFA₄, that is constructed to recognize NFA₁ \cdot NFA₂ (concatenation) using the construction technique in the book. How many **accept states** will NFA₄ have?

(d) Have many transitions will NFA4 have?