To prove a language L is not context free:

Show that for any p there is a string $s \in L$ with $|s| \ge p$ such that for any $\frac{1}{s + p} \le \frac{p}{2}$ such that $\frac{1}{s + p} \le \frac{p}{2}$ uvxyz = s with $|vxy| \le p$ and |vy| > 0, there exists an i such that

 $uv^ixy^iz \notin L$

Step 1: provide a candidate string s within L that is longer than p

• Make sure $s \in L$ and $|s| \ge p$ for any p

Step 2: show that if uvxyz = s, $|vxy| \le p$, and |vy| > 0, then uvxyz must have certain characteristics or falls into certain cases.

- If you use cases, make sure they are exhaustive and broad
- In general, focus on vxy and $|vxy| \le p$

Step3: show that there is some i such that $uv^ixy^iz \notin L$

- in many cases you can use i = 0 or i = 2 will work
- if you used cases in step two, show that for any case you can make $uv^ixy^iz \notin L$

Example 1: $\{a^{n^2} : n \ge 0\}$

Step 1: finding a candidate string s

$$S = \alpha^{p^{*}}$$
 $S \in LV$ $|S| = P^{*} > PV$

Step2: characteristics of uvxyz using |vy| > 0

Step 3: finding i so that $uv^i xy^i z \notin L$

$$UV^{2}Xy^{2}Z = \alpha^{\frac{p^{2}-pn+2}{pn}} = \alpha^{\frac{p^{2}+(1-1)pn}{2}}$$

$$\frac{n^2}{n^2+1}$$
 $(n+1)^2 = n^2 + 2n+1 > n^2+1$

$$UV^{2}Xy^{2}z=a^{p_{+}^{2}}(p^{2}sy)m=a^{p_{-}^{2}(1+sk)}$$

Example 2: $\{\underline{a}^n\underline{b}^m\underline{a}^n : n \ge m\}$

Step 1: finding a candidate string s

Step2: cases of v and y using $|vxy| \le p$

Case I: V, y Contain an a from that 1st run

Case 2: doesn't contain a from 1st group of a's

The Vory Contain at Jeast one b

All a's

Step 3: finding i so that $uv^ixy^iz \notin L$

Case 2:

7UV2xy2z Prm # of b's so UV2xy2z £L JUV2xy2z £L

Aug -> E

$$\begin{array}{c}
(1) & \underbrace{\xi, \xi \rightarrow \varphi} \\
(1) & \underbrace{\xi, \xi \rightarrow \varphi} \\
(2) & \underbrace{\xi, \xi \rightarrow \varphi} \\
(3) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(4) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(5) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(6) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(7) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(8) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(9) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(1) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(2) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(3) & \underbrace{\xi, \alpha \rightarrow \xi} \\
(4) & \underbrace{\xi, \alpha \rightarrow \xi}$$

ALY > EA23E

A 23 > 6 A 13 E