
Training ICPC Teams: A Technical Guide

Rujia Liu

Department of Computer Science and Technology
Tsinghua University

Beijing 100084, China

Abstract. ACM/ICPC is a world-wide annual programming contest
over thirty years. As in other competitions, the result of a team largely
depends on how they are trained. Methods and guidelines introduced
in this article are extracted from various successful teams, including re-
gional champions and world finals medalists. The long-term training is
divided into three aspects. Principles and practical suggestions are given
for each, providing both theoretical and practical information for instruc-
tors, coaches and competitors.

Key words: programming contest, ACM/ICPC, online judge, team
training, algorithm, data structure, team collaboration

1 Introduction

Programming contests have grown steadily in recent years. Programming lovers
have a plenty of choices on what contests to attend. Nevertheless, ICPC is still
one of the most influencing world-wide programming contests, attracting a huge
number of people representing thousands of schools in over sixty countries.

This article discusses some technical aspects on ICPC team training, which
can hopefully help some teams improving their training process and hence then
results. Note that there are also quite a few non-technical issues that greatly
affect a team’s performance in a contest, but they’re beyond the scope of this
article.

2 Getting started

Programming is fun. This is the main reason for most beginners to stay in ICPC.
Problem solving is even more fun, exciting and challenging. My advice is simple:
keeping these good feelings in mind, do whatever you love, until you find it
necessary to think about something serious.

2.1 Solving Problems Online

When getting started, practice is much more important than theory. Everyone’s
encouraged to program as much as he can, as long as enthusiasm is perfectly kept.



2 Rujia Liu

But there is one thing you need to know first: ICPC concentrates on problem
solving rather than software engineering, so practicing real-world programming
for software development (networking, GUI, concurrent programming etc) does
not help much in ICPC.

Online Judges. It’s recommended that you try problems especially designed
for ICPC, which can be easily found in many world-famous 24-hour Online
Judges [18], [19] [20] [21] [22] [23] [24]. There are also online contests held in
these sites, which are essential in team training, as we’ll see in this paper soon.

Websites for UVa Online Judge Users. Be warned, though. Solving
many problems found in the online-judges requires more than programming
skills. That’s why some problems are solved by a lot less people than other.
An interesting website closely related to UVa Online-Judge is [29], which gives
you advice of what problems to solve next. It also takes care of your training
progress, which is great if you’re designing your own training schedule based on
UVa. There are also other amazing websites which helped a lot of competitors
from novice to advanced [28] [30] [31]. Interestingly, a large part of [28] is written
and published in a book [2], which could be downloaded freely from [28].

TopCoder. Besides ICPC-style Online Judges, many programmers find it
helpful to participate in algorithm contests by TopCoder Inc. [25] There are a
lot of problems in different categories and difficulties available in the practice
room, as well as frequently held Single Round Matches (SRM) and tournaments.
What’s more, there are tutorial articles about commonly-used algorithms and
problem analysis for every contest it held. One of the most useful and unique
features, for both novices and advanced programmers, is that you have chances
to read codes from everyone there, including some of the most talented program-
mers in the world. This could be extremely helpful to your coding ability, if you
spend a lot time to analyze merits and defects of others’ code, just as fiction
writers and movie directors do.

2.2 Tackling Easy Problems

Most people got started by solving easy problems. Here by easy problems we
mean the problems in which you only need to do what you’re asked to do,
i.e a direct implementation of the problem description. For example, do some
statistics, string processing or simulation. These problems mainly require some
coding ability but not any sophisticated algorithm or deeper mathematics.

Elementary data structures. They should be studied together with the
programming language. The concept of algorithm complexity should be estab-
lished at the same time, as told in every book on data structure and algorithms.
Both C++ and Java programmers can use stacks, queues, deques1 directly, but
new programmers are recommended to implement their own, as to ensure solid
coding ability. Many beginners tend to write extremely long and complex im-
plementations of basic data structures, which are both error-prone and hard to
debug. They’re encouraged to read elegant codes (e.g from [25]), until they could

1 and even priority queues, sets and maps, both hash-based or comparison-based



Training ICPC Teams 3

easily write (or at least mimic) their own simple and correct codes, with little
effort.

String manipulation. Strings are involved in most programming contests
due to its popularity and difficulty. Some of them are easy in algorithm, but
complex in implementation. In most string problems (including problems that
need special I/O formatting), familiarity with library functions and clever tricks
play a more important role than algorithms. Some people find it relatively easier
in Java to manipulate strings2, others prefer to write snippets in the contest
material, illustrating commonly-used techniques. As for basic data structures, it
is recommended for beginners to learn from others’ code.

Sorting and Searching. Although there are deep theories behind sorting
and searching, beginners usually concentrate on the usage of algorithms rather
than implementation details or philosophy behind them, since many classic sort-
ing and searching algorithms are available in standard library of most popular
programming languages. However, please keep in mind that major theories be-
hind need to be studies once you’ve mastered their usage.

2.3 Improving Your Coding Ability

By “programming ability”, we mean coding, debugging and testing. Though be-
ing individual skills, these abilities greatly affect cooperation too. It’s better for
the team members to use the same language and similar coding conventions, if
one cannot find his bug and asks another person to read his code. Though pro-
gramming is the very first skill, it needs improving all the time. As an example,
coding complex algorithm can only be trained after studying these algorithms.

Language Considerations. Most contestants use C/C++ for competition,
but sometimes it is more convenient to use Java instead. For example, Java
provides a handy BigInteger class3, which saves some typing work (C++ pro-
grammers needs to type the prepared code from standard code library into the
computer) and reduce the probability of silly bugs (there might be some typos).
Java also has a collection of regular expression functions, which is great for some
string-manipulation problems4. Also, some people find it easier to debug Java
programs, so it’s always worth trying it, if you haven’t done so.

Refining Your Own Code. Coding is extremely flexible, especially for
C++ programs. Two programs implementing the same algorithm can look very
different. As stated before, it is always a good idea to look at others’ programs,
especially ones that are generally believed clean and elegant, but don’t forget
a more basic but important way to practice: rewrite your code for the same
problem again and again, until you find it satisfying, just like fiction writers
do (again!). Note that rewriting does not mean to recite your code then enter
exactly the same one again and again. The crucial part is the rethinking of the

2 even if you don’t use regular expressions
3 There is also a BigDecimal class, but is not required for most of the time
4 Though it’s better to have language-neutral problems in contests, it isn’t always the

case



4 Rujia Liu

structure and style of your code before each rewriting, possibly after reading
others’ programs. As a by-product, you can also gradually accumulate your own
snippets, standard code library, and even coding reminders discussed later.

Testing and Debugging. Testing and debugging are best described as “art”
rather than “technical”. There are a lot of general-purpose discussions on this
topic. There are also tips specially for competitors, as in Section 2.7 of [3]. In
order to improve, never separate coding from testing and debugging. Clean and
elegant codes are usually easier to test and debug than long and confusing codes,
so you should always take into account testing and debugging difficulty in your
code training. An important feature in ICPC is that three people have only one
computer, so it’s often risky to find an unknown bug of a complex program by
tracing (i.e. stepping or running with breakpoints, inspect watches etc), since it
usually takes a lot of time. A good way to avoid tracing is to force yourself to
write programs in text editors like EditPlus, with shortcut keys only to compile
and run your program. Adding some debugging outputs in addition to what is
asked in the problem description usually helps, but it is again an art. It’s also
helpful to learn some language tricks (macros, assertions etc), but the philosophy
behind your testing and debugging method is the most crucial.

Know Your Defects. Even after heavy training, it’s likely that you’re still
making small mistakes that you’ve already made a lot of times. But the more
you practice, the better you know yourself, which is very important. Imagine you
have just coded a program but failed the first sample in the problem description.
You cannot find your bug in 10 minutes, but someone else claimed that he found
another easy problem, hence want to use the computer. Then it’s usually better
to leave the computer, sit down by the table and examine the printed code with
eyes and pencils. Now you can’t apply any debugging techniques because you’re
not on keyboard, whether and how fast you can find the bugs largely depends on
your carefulness, and how well you know yourself. An easy way to know yourself
better, is recording your common mistakes, especially the ones that cost you a
lot of time to find. If all these records are well organized as a reminder (discussed
later), they’ll help you greatly in real contests.

3 Enhancing Your Theoretical Background

Trying to solve more problems is good, but the quantity is not the most im-
portant thing. When you managed to solve 50 easier problems somewhere, it’s
better to seek for more challenges.

3.1 Mathematics

In real contests and online judges, there are a large number of problems that
require less programming skills but more maths. Most mathematics involved can
be divided in these categories:

Arithmetics. Arithmetics in computer is not exactly what we learnt in high
school mathematics. Actually this is something related to computer architecture.



Training ICPC Teams 5

Programmers should know the way integers and real numbers are represented
internally, be familiar with binaries (and some tricks with bits), and be able to
code high-precision numbers (Java programmers can use BigInteger class, which
deals with an arbitrary numeric bases), fractions and complex numbers.

Combinatorics. being an important branch of mathematics on itself, Com-
binatorics is essential for competitors to estimate asymptotic complexity of algo-
rithms, as well as to solve problems related to counting and probability. Besides
basic principles, formulae and theorems, case studies (e.g famous integer se-
quences, different proofs of various equations involving binomial coefficients) are
necessary to acquire adequate understanding of combinatorics, especially prob-
lems involving recurrence. Sometimes Pólya theorem and generating functions
are required to solve a combinatorics problem.

Number theory. Number theory is popular in programming contests5 par-
tially because of its simplicity in problem statement. Number theory is extremely
deep, but most problems in ICPC requires a rather small set of background
knowledge such as prime numbers (prime table generation and primality test-
ing), greatest common divisor, modular arithmetic and congruence, e.g. solving
linear congruences, and Euler’s φ(n). By the way, the BigInteger class in Java
comes with quite a few number-theoretic functions like greatest common divi-
sor, modular exponentiation, modular inverse and primality testing, which can
be extremely helpful in some problems.

Games. By the word “games” we mean combinational games. In most cases,
it’s sufficient to understand how to brute force the answer (possibly by minimax
search with α−β pruning), how to solve the Nim-type games with the Sprague-
Grundy theorem[9]. Ad-hoc game problems sometimes appear too, some of them
could also be solved with the SG theory, but others need some math work or
are solvable via other methods like dynamic programming or graph algorithms.
Though more comprehensive books exist [7] [8], I feel it’s unnecessary for ICPC
contestants to dive into it too deep.

Other mathematical concepts and algorithm are helpful, too. For example,
matrix multiplication can be used to solve linear recurrence more quickly, Gauss
elimination is required in many problems related to Markov chains, permutation
group usually helps in card shuffling and sorting by swapping, numerical analysis
can do a great job in some computation-oriented problems. All in all, it is usually
a good idea to collect formulae, problems, algorithms and codes that are not too
widely-used but could help a lot in certain circumstances.

Readers are encouraged to read this excellent book on mathematics [10], for
combinatorics, probability, number theory and other topics not covered here.

5 For example, most recent regional contests in Japan has a pure number-theoretic
problem



6 Rujia Liu

3.2 Algorithms Designing Techniques

It’s great if a few mathematical conclusions are enough to solve the problem,
but in most cases this isn’t true (after all, ICPC is not a math contest). You
have to design an algorithm, carefully code it6 and make it work.

Brute Force. Brute force is one of the most important problem-solving
techniques applicable to a large range of problems, when the problem instances
are small enough, or efficiency is not particularly important. It’s also a good glue
for different algorithms. Apart of simple brute force algorithms that only involve
a few nested loops, people have to get familiar with backtracking. Although
theoretically easy, backtracking is a challenge in algorithm design, coding and
debugging for most beginners. The first thing to learn is generate-and-testing
different structures of solutions like subsets and permutations, then pruning in
the search tree, and estimating the worst-case performance. Fine tunings in code-
level usually help a lot in problems involving backtracking, so it’s a good practice
for every programmer to try different ways to implement the same algorithm,
and pick the one with maximal satisfaction. As a rule of thumbs, people can
hardly master backtracking without a sufficient amount of practice on various
types of problems.

Dynamic Programming. Frankly, dynamic programming is not easy to
understand at first, but once you understand it, everything’s natural and beau-
tiful. It’s a pattern to analyze problems and design algorithms7, and the ability
of solving dynamic programming problems increases as the number of problems
you tried. Don’t miss the classic problems that are taught in almost every algo-
rithm textbooks like Longest Common Subsequence (LCS), Longest Increasing
Subsequence (LIS), Optimal Binary Search Tree (OBST), 0-1 knapsack, edit dis-
tance, Matrix Chain Product etc. But as the difficulty and complexity increasing,
other theoretical knowledge and skills are required, as we’ll see shortly.

Data structures. Data structures play an important role in time-critical
problems. Priority queues, union-find sets, (augmented) interval trees, (aug-
mented) balanced BSTs and binary indexed trees often help to reduce time
complexities on other algorithms, frequently appeared in tough contests in Eu-
rope and Asia. There are also some pure data structure problems that involve
statistics or simulation. Compared to ICPC problems, data structures are more
emphasized in IOI-style contests[27].

Combining Algorithm Designing Techniques. There are other tech-
niques like divide and conquer, greedy... they are all very important and fre-
quently appeared in ICPC contests. Harder problems often require a combina-
tion of several algorithm designing techniques (e.g binary search is easily com-
bined with other algorithms). Readers are recommended to read classic algorithm
books [14], [15] and [12] for these algorithm designing techniques with applica-

6 though some mathematical modelings and deductions could be done in prior to this
7 Though some harder problems involves non-trivial optimizations involving convexity

or concavity of some function, which requires insight of the problem as well as some
math work



Training ICPC Teams 7

tions. But again, the most effective way to gain experience is to try a lot of
different problems.

3.3 Graph Theory

Graph theory is a big source of ICPC problems. Very few contests do not have
a problem involving problems. Recent World Finals often have graph theory
problems that distinguish outstanding teams from ordinary ones. However, un-
derstanding graphs is not always easy for beginners. If you’re new to graph
theory, make sure you’re familiar with popular concepts and terms that are ex-
tensively used. Examples of graphs in different areas help a lot here. Readers
are encouraged to read Chapter 9 of [3], which explained the most widely used
terms, graph representations, BFS and DFS, and topological sorting, with a few
problems left as exercises. Before further study, it’s a must to practice problems
that needs mathematical modeling in terms of graph theory, and try out different
representations of the same graph.

Classic Problems. Some problems in graph theory are so classic that every-
one should be able to solve them. For example, problems related to connectivity
(including strongly connectivity and bi-connectivity), shortest paths (Dijkstra,
Bellman-Ford or Floyd-Warshall etc), spanning trees (Prim or Kruskal), eule-
rian paths and circuits, matchings in bipartite graphs (Hungary, Hopcoft-Karp
and Kuhn-Munkres) and network flows (maximum s-t flows and mincost flows).
Readers are encouraged to read a comprehensive but easy-to-understand book
on graph theory[5]. However, many graph problems demand good mathemati-
cal modeling ability, which needs practicing. Some algorithms, though generally
believed easy, need further investigating. For example, Dijkstra’s algorithm can
also handle minimal bottleneck path problems, maximal flow algorithms can
also be used to calculate minimal cut. To my experience, people can be easily
confused by some concepts, theorems and algorithms in network flow. The best
thing to make it clear is through experiments on different contest problems that
can force the programmer to correctly consider every detail.

More Classic Problems. Here is another list of problems that appeared
in some contests (though very infrequently): k-th shortest path between two
nodes, k-th smallest spanning tree, minimum degree-constraint spanning tree,
minimum arborescence, minimum mean-weight cycle, minimum path cover in
both unweighted and weighted directed graph, stable marriage problem, eulerian
circuits in mixed graph, Chinese postman problem, 2-SAT problem, maximal
weight closure, maximal density subgraph, graph recognition (e.g chordal graph,
interval graph, co-graph, line graph...), and more. For in-depth references, you
may want to take a look at [13], though it looks too difficult to be practical for
ICPC.

Interestingly, many concepts from other algorithms closely relates to graph
theory. For example, many dynamic programming turns into shortest-path prob-
lems when losing the topology, and single-agent search algorithms for path-
finding problems like A* and IDA* could be stated in pure graph theory ter-
minology. There are also some “ad-hoc” graph-theoretic problems that mainly



8 Rujia Liu

requires hard thinking instead of mathematical modeling (although some of the
algorithms discussed above are also required). You can find many of these prob-
lems in European regionals.

3.4 Geometry

Problems involving geometry are usually difficult, complex or very easy to make
mistakes. There are a lot of geometry algorithms that are almost impossible to
code during a contest, but there are still a lot problems that can be tackled.
Elementary geometry, analytic geometry and trigonometry would be sufficient
to solve these problems in an easy and elegant way, so people may want to print
and bring related math formulae and/or pre-written routines. In fact, geometry
routines composed a large part of printed materials for many experienced teams.
For some more algorithm-oriented geometry problems, fundamental concepts
and algorithms from computational geometry are required.

people should at least know how to find the convex hull of points on a plane,
how to compute the area of a simple polygon, and decide if a point is inside a
given polygon, outside of it, or on its boundary. But when you’re starting to seek
for more challenges, there are just too many classic problems to solve8. Some of
them even involve 3D geometry, which itself is much more complex compared to
2D geometry.

Some classic contents that are involved in contest problems include: convex
hulls in higher dimension, voronoi diagram, arrangment of lines, data structures
for geometry, path planning, geometry optimization and classic algorithm design
techniques like scanning, divide-and-conquer, deterministic and randomized in-
cremental etc.

People are encouraged to read [4] and [6], but be warned that inexperienced
programmers will soon find most of the algorithms in it extremely hard to imple-
ment correctly. Actually, only very few super-tough problems requires complex
classic geometry algorithms. Here is another book I would like to recommend:
[16], which is a good source of handy snippets. Of course, they should be rewrit-
ten by yourself to maximize its usefulness, as I explained above.

3.5 Last Words

We’ve already mentioned quite a lot of classic problems, mainly in graph theory
and geometry, but there are more.

Probably the most famous ones that are not mentioned are Range Mini-
mal Query (RMQ) and Lowest Common Ancestor (LCA). They are extremely
frequently used in problems about sequences and trees. Another big class of
problems not mentioned is string-theoretical algorithms. They are probably a lot
more difficult than many people thought. A serious training should cover pattern-
matching algorithms like Knuth-Morris-Pratt algorithm (KMP) for single-pattern

8 In fact, there are still quite a lot of non-modified version of classic problems appeared
in real contests



Training ICPC Teams 9

case and Aho-Corasick for multi-pattern case. Many string-theoretical prob-
lems requires deep understanding of these two algorithms in terms of string-
matching automata. Classic divide-and-conquer algorithms for finding maximal
palindromic substring or repetitions are also recommended to study. Suffix tree,
or its good substituent, suffix array, both concept and related algorithms (e.g.
construction and height array computation) are essential for many problems of
this kind. People are encouraged to read[11].

Though there are still something missing9, but mastering everything men-
tioned is already a very challenging task. Fortunately, there are some good
competition-oriented books for beginners [2] and [3]. It’s also a good idea to try
USACO Training Gateway[26], which is a step-by-step training system. Early
chapters take you through most of the basic but practical stuffs, while later
chapters involve more complex algorithms and problems. Though the problems
are in IOI-style, the algorithm nature is the same as ICPC problems.

For advanced topics, though, people need to spend more time and take more
practice. Though I listed quite a few references for these topics, all of them are
not for programming contests. ICPC contestants may find it more practical to
read [1]10, as it’s specially written for programming contests11. It is especially
suitable for in-depth training, as there are hundreds of real problems of a more
difficult level.

Some books [1] [2] [3] contain a list of problems in category, which is espe-
cially useful when training a particular algorithm like dynamic programming or
network flows. Websites mentioned above also contained similar lists, which can
also be utilized.

4 Planning Your Training

Always try to train together, once you have a team. Try to know better about
each other and become good friends12. There are non-technical aspects that have
great influence on a team’s performance, but they’re beyond the scope of this
paper, hence will not be discussed further here.

4.1 Know Each Other Better

When team members are not so familiar with each other, they may try to solve
the same set of problems individually, in a fixed time. After comparing their
results, then some discussions, they’ll gradually know the merits and defects of
everyone. There are more types of specialization than many teams are aware of,
which are listed below (still incomplete!). Some of them are hard to train, but
it’s helpful to know who is good at what, according to the list.
9 like linear programming (LP), but it is rarely required in real contests

10 Currently only Chinese edition available
11 Though its main audience include potential IOI competitors, not only ICPC com-

petitors
12 Have meals together, read each others’ blogs etc



10 Rujia Liu

Problem Reading. Any mistake in problem reading can be hazardous.
Some people can quickly grasp the main idea of a problem, skipping long and
useless background information or stories; some other people can find hidden
hints, potential ambiguities, traps or possible misunderstandings in the problem
description more easily.

Algorithm Designing. In theory, algorithm designing is the heart of ICPC.
For simple problems, the algorithm might be straightforward, but complex prob-
lems usually require an intensive discussion. Some people like to do mathemati-
cal modeling or problem transformation, before actually designing the algorithm;
some people like to propose conjectures that greatly simplifies the problem, once
proved; some people like to provide ideas or directions without knowing whether
they could actually work; some people like to follow a specific idea and think in
more depth and detail (e.g deriving math formulae); some people like to simplify
an existing algorithm and make it easier to implement; some people like to op-
timize an existing algorithm (possibly with low-level tricks) to make it pass the
jury’s tests; some people are even experts of designing randomized algorithms
that are virtually incorrect but very hard to beat, at least by the jury. Having
people especially trained in most (or even all) of these aspects mentioned, the
team could become very strong.

Coding and Bug-finding. In most cases, a program should always be writ-
ten by a single person, but it does not mean no one needs to read others’ code.
At times, it is even easier to find silly bugs written by another person. Thus, the
ability to read others’ code should be taken into account. [25] is a great place to
practice writing and reading algorithmic codes.

Test-setting. Unlike many teams do, preparing test cases should often by
done in parallel to coding or even algorithm designing. When reading the prob-
lem, some people create simple but typical test data (with answers evaluated by
hands) for all-purpose use (discussing algorithms, testing and debugging etc), as
well as tricky data that is very likely present in the judge data, independent of
the algorithm or implementation. When discussing algorithms with other peo-
ple, some programmers can think of counterexamples for incorrect algorithms
more easily. What’s more, even after another person already started coding, it’s
usually a good idea to have a teammate to analyze the error-prone parts of
the algorithm being used, and create simple but special-purpose white-box test
data for testing and debugging. In my opinion, a good collaboration in coding,
debugging and testing greatly enhances a team’s performance.

4.2 Individual Training

Roughly speaking, there are two types of training: individual training and team
training. The aim of individual training is to improve individual skills, while
team training concentrates on collaboration and contest strategies.

We’ve already discussed a lot about code practicing and background learning,
why we mention it again? The answer is: though everyone in a team should
try to learn more algorithms and solve more problems, there should be some
specialization. It could be according to abilities defined above, or more frequently,



Training ICPC Teams 11

be according to a problem category. For example, many teams have a graph
theory expert, every graph-theoretic problems go to him. The problem is: do
other people need to know something about graph theory? If yes, how much and
how deep?

My suggestions is: they should at least have a solid theoretical background in
graph theory: the terminology, theorems, classic algorithms and problems. The
main difference between them and the expert is familiarity, experience, sense and
creativity. If the other two are novices in graph theory, no discussion is possible
for graph theoretic problems, which is very risky. What’s more, if every one can
only solve one or two kinds of problems, it’s almost impossible to solve complex
problems that require a combination of several different kinds of knowledge.

Keeping in mind the specialization in your team, the individual training will
be more effective.

4.3 Team Training

The best way to improve a team’s collaboration is to participate in online con-
tests, especially the ones with some of the top teams in the world.

Rule-based Strategy. Most teams would like to use a relatively fixed strat-
egy in every contest. [32] defines three example strategies: Simple, Terminal
Man(TM) and Think Tank(TT). In recent years, people tend to use a mixed
strategy: there is no terminal man, nor a thinking tank. Instead, a team should
have set of simple rules with priorities for themselves. For example, a typical
rule is to request a printed copy of code after each submission, and have another
person to read the code if it’s soon rejected. Another possible rule is that no
problem can be left unread after the first hour. Try to discuss the rules after
each team training, possibly adding some new ones that you feel necessary dur-
ing this training, and removing ones that you feel unnecessary, or conflict to the
ones you’ve just added. It’s also worth trying some experimental rules to see if
they’re good, but again, participate in online contests as many times as you can,
if order to find a really fine-tuned strategy for your team.

Situation Judging. Judging the current situation is arguably one of the
most difficult but crucial task in collaboration during real contests. The judge-
ment relies on the problem analysis(ideas and algorithms discussed so far, re-
jected codes etc), the balloons on site, and possibly the board if available. It’s
usually helpful to draw a table containing the current status for each problem,
and update it each time a person reads a problem, finds an algorithm, starts
writing the code or creates test data. An important part of situation judgement
is setting current short-term and long-term goals according to every team’s per-
formance, since they greatly affect decision making.

Decision Making. When the situation is judged, the team leader can make
decisions13. The decision should be in accord to the current goal, considering
possible risks. If necessary, the team leader can give a whole list of candidate

13 It’s usually a good idea for a team to have a team leader who is good at making
decisions



12 Rujia Liu

actions to take next, and have a short discussion with other two members. But
in most circumstances, the team leader evaluates pros and cons of each possible
action and makes the final decision himself. The decision is often about three
factors: time, terminal and team members. That is, the rough schedule for the
rest of the contest, who should use the computer for what problem next, and
what other two people are expected to do at the same time. Be warned that the
situation changes constantly during the contest, so the team leader should be
sensitive enough. Also, it’s very important to have all three members know the
current situation and the team leader’s decision clearly, otherwise the decision
makes no sense.

One last word: after the contest is over, don’t forget to spend some time to
sit down and discuss what have we learnt from the contest, about team strategy,
situation judgement and decision making. This is a lot more important than
your final ranking in the contest.

4.4 Preparing your Contest Materials

In real ICPC contests, people are allowed to bring a limited amount of printed
materials. All three people should be familiar with these materials, and it’s
recommended that it is prepared by all three people rather than a single person.

Snippets. When solving more and more problems, many people realized
that they’re writing similar codes quite frequently. It’s a good idea to collect
some snippets (short codes, not as long as the codes in the standard code li-
brary, discussed next). The tasks that the snippets do should be easy, and the
snippets themselves should be very short, handy to use, easy to understand, self-
explanatory and, of course, bug-free. Many people use snippets to illustrate the
use of some programming features and standard libraries (e.g STL, JCF). It’s
usually impossible to find your favorite code tricks in any books, manuals... etc if
you happen to forget them. Experienced programmers may find it unnecessary,
but new programmers usually benefit from it quite well.

Customized Handbook. By handbook we mean concepts, formulae, facts,
constants... It does not have to be complete, but should be helpful. This is
required because sometimes it’s clearer to print original formulae instead of their
corresponding codes, in order to do mathematical derivations. Most frequently
used ones are geometry, linear algebra, trigonometry, numeric analysis and other
important formulae published in most mathematical handbooks. I personally
prefer to place short but hard-to-understand or math-oriented codes just after
their relevant mathematical concepts and formulae, as we need to know the
preconditions, arguments and return values of the routines. Short comments in
the code may be inadequate.

Standard Code Library. Codes in the library, unlike snippets, are algo-
rithmic. The main purpose is to provide correct, short and fast implementation
of some classical algorithms. Here the rule of thumbs is: everything should be
written by yourself, and thoroughly tested. If you borrow codes from someone
else, you’re probably abusing them without actually understanding them. Some
harder problems requires slight modifications on the classical algorithms, but



Training ICPC Teams 13

even smallest changes can be difficult to make if the codes are not yours. I per-
sonally suggest that brief introductions to the problem, algorithm with examples
(even with test data) should be given together with the codes. In practice, these
words might also provide some hints to algorithm design. Though standard code
library may be useful at times, don’t rely on it too much. Try to think of them as
code examples to remind you of algorithm outlines and details, not black boxes
that you use without looking at.

Reminders. This is one of my favorite kind of material, but it is probably
prepared by the least number of people. For example, examining a short list of
most common mistakes [33] might be helpful in many situations. The famous
“How to Solve it”[17] might also be helpful if you’re facing hard problems. Other
stuffs that you believe is important but easy to forget can also go here. If you
love to write a short summary after each training session, it’s easy to collect
useful reminders from these summaries.

5 Summary

In this paper, we discussed several aspects of training an ICPC team, for both
beginners and experts. Many techniques and suggestions can apply to other
programming contests, too. However, this paper is by no means a complete
guide. As stated above, some non-technical factors can be equally important,
and, this paper does not give any concrete example of training schedule or a list of
good problems and contests for training, due to the limited space. Nevertheless,
students and coaches should still be able to benefit from the principles and
methods discussed above, especially when they’re adapted to the reality.

6 Biography

Rujia Liu (rujia.liu@gmail.com) participated in the 2001-2002 ACM/ICPC, win-
ning the champion of Shanghai regional contest in 2001, and then a silver medal
(the 4th place) in the world finals, Hawaii in 2002. He is also a coach of IOI[27]
China national training team (a team consisting of 20 students from which the
final national team is selected) since 2002. All the world finals contestants in
Tsinghua University, who achieved one gold medal (the 2nd place in 2007) and
two silver medals (the 4th and 5th places in 2002 and 2003) have been in the
national training team when in high school. He has also arranged two sets of
regional contest problems for 2006 Xi’an and 2007 Beijing, authoring 18 out of
all 20 problems in them14. He also creates problems for online contests in UVa
Online Judge[18] and other programming contests.

7 Acknowledgements

Rujia Liu is grateful to Prof. Miguel A. Revilla and Prof. Bill Booth for providing
the chance to write a paper for CII. He would also thank Gelin Zhou (Tsinghua
14 Other two problems are from Shahrair Manzoor, one for each problemset



14 Rujia Liu

University), Bin Wu (Wuhan University), Naiyan Wang (Zhejiang University),
for suggestions and discussions on this paper.

References

1. Rujia Liu, Liang Huang: The Art of Algorithms and Programming Contests. Ts-
inghua Press, China, 2004

2. Ahmed Shamsul Arefin: Art of Programming Contest (Special Edition for UVa),
second edition. Gyankosh Prokashoni, Bangladesh, 2006

3. Steven S. Skiena, Miguel A. Revilla: Programming Challenges - The Programming
Contest Training Manual. Springer-Verlag, 2003

4. J.O’Rourke: Computational Geometry in C. Cambridge University Press, New York,
second edition, 2000.

5. R.Sedgewick: Algorithms in C++: Graph Algorithms. Addison-Wesley, third edi-
tion, 2001.

6. M de Berg, M.van Kreveld, M.Overmars, and O.schwarzkopf. Computational Ge-
ometry: Algorithms and Applications. Springer-Verlag, Berlin, second edition, 2000.

7. Elwyn Berlekamp, John H. Conway, and Richard Guy: Winning Ways for Your
Mathematical Plays, Massachusetts: AK Peters, second edition, 2001.

8. John Conway: On Numbers and Games, second edition, Massachusets: AK Peters,
2000.

9. Thomas Ferguson: Impartial Combinatorial Games Notes. http://www.math.ucla.
edu/tom/Game_Theory/comb.pdf

10. R.Graham, D.Knuth, and O.Patashnik: Concrete Mathematics. Addison-Wesley,
Reading MA, 1989.

11. D.Gusfield: Algorithms on Strings, Trees, and Sequences: Computer Science and
Computational Biology. Cambridge University Press, 1997

12. S.Skiena: The Algorithm Design Manual. Springer-Verlag, New York, 1997
13. R.K.Ahuja, T.L.Magnanti and J.B.Orlin: Network Flows: Theory, Algorithms and

Applications. New Jersey: Prentice-Hall, 1993
14. Thomas H.Cormen, Charles E.Leiseison, Ronald L.Rivest and Clifford Stein. In-

troduction to Algorithm, second edition, MIT Press and McGraw-Hill, 2001.
15. Jon Kleinberg, Eva Tardos: Algorithm Design, Addison-Wesley, 2005.
16. Philip J.Schneider, David H.Eberly: Geometric tools for computer graphics, The

Morgan Kaufmann Series in Computer Graphics and Geometric Modeling, Morgan
Kaufmann Publishers, San Francisco, 2003

17. G.Polya: How to Solve It. http://www.math.utah.edu/ pa/math/polya.html
18. UVa Online Judge. http://acm.uva.es/problems
19. The 2000’s ACM-ICPC Live Archive Around the World. http:

//acmicpc-live-archive.uva.es/nuevoportal/

20. POJ Online Judge. http://acm.pku.edu.cn/JudgeOnline
21. ZOJ Online Judge. http://acm.zju.edu.cn
22. Timus Online Judge. http://acm.timus.ru
23. SGU Online Contester. http://acm.sgu.ru
24. Sphere Online Judge. http://www.spoj.pl
25. TopCoder Competitions. http://www.topcoder.com/tc.
26. Rob Kolstad, USACO Training Gateway. http://ace.delos.com
27. International Olympiad in Informatics official website. http://www.

ioinformatics.org/



Training ICPC Teams 15

28. “World of Seven”, METHODS TO SOLVE VALLADOLID ONLINE JUDGE
PROBLEMS, Steven Halim, National University of Singapore. http://www.comp.
nus.edu.sg/~stevenha/

29. Felix Halim .NET - Hunting UVA Problems!, Felix Halim. http://felix-halim.
net/uva/hunting/

30. ACMSolver.org, ACM/ICPC Programming Contest Tutorial Website for Val-
ladolid OJ by Ahmed Shamsul Arefin. http://www.acmsolver.org

31. ACMBeginner.tk, ACM Valladolid Online Judge (OJ) Tools, Tips and Tutorial by
M H Rasel. http://www.acmbeginner.tk

32. Ernst,F., J.Moelands, and S.Pieterse: Teamwork in Programming Contests: 3 *
1 = 4, ACM Crossroads Student Magazine, http://www.acm.org/crossroads/

xrds3-2/progcon.html

33. Shahriar Manzoor: Common Mistakes in Online and Real-time Contests.
ACM Crossroads Student Magazine. http://www.acm.org/crossroads/xrds7-5/

contests.html


