2.30 (a)

Prove $\exists 0^1 0^n 1^p \mid n \geq 0 \Rightarrow A$ is not context-free

Consider the string $s^* = 0^p 1^p 0^p 1^p \Rightarrow uvxvyz$

$|s| \geq p$

Because $|vy| \geq 0$ and $|vxy| \leq p$, the following cases must be considered

1) vy contains only 0s or only 1s

if $|vy| = n \geq 1$

then uv^2xy^2z is either

(a) $0^{p+n} 1^p 0^p 1^p \notin A$

(b) $0^p 1^{p+n} 0^p 1^p \notin A$

(c) $0^p 1^p 0^{p+n} 1^p \notin A$

(d) $0^p 1^p 0^p 1^n \notin A$

2) vy contains both 0s and 1s (in either order)

let the # of 0s be m

and the # of 1s be n, $m \geq 1$, $n \geq 1$
\#1 \(uv^0xy^0z \) is either

(a) \(O^p \) \(\rho^p \) \(O^p \) \(\rho \) \(O^p \) \(\rho \) \& A

(b) \(O^p \) \(\rho^p \) \(O^p \) \(\rho^m \) \(\rho \) \& A

(c) \(O^p \) \(\rho \) \(O^p \) \(\rho^m \) \(\rho \) \& A

A contradiction is reached in all cases.

Therefore, \(A \) is not context-free.
#2 Prove \(Q = \{a^k \mid k \text{ is prime} \} \) is not context-free.

Consider string \(s = a^p \) where \(p \) is prime.

Note: \(uvxyz = a^p \), \(|uvxyz| = p \), \(|uy| = n \geq 1 \)

Damp string \(s \) \(p+1 \) times:

\[
|uv^{p+1}xy^{p+1}z| = |uvxyz| + \underbrace{\cdots}_{p+1} + |uv^{p+1}y^{p+1}| = p + pn = p(1+n)
\]

However, \(p(1+n) \) is not prime.

Since a contradiction is reached,
\(Q \) is not context-free.
#3
Original grammar \(G = (V, \Sigma, R, S) \)

Construct \(G_0 \) as follows, assuming \(S_0 \notin V \),

\[
G_0 = (V_0, \Sigma, R_0, S_0)
\]

\[
V_0 = V \cup S_0
\]

\[
R_0 = R \cup S_0 \rightarrow S_0 S \mid \varepsilon
\]

#4
Many answers are possible, e.g.,

NCFLs yield efficient parser implementations for a compiler.
#5

\[
\frac{aaabbb}{aabb} \to \\
\frac{aaSbb}{aSb} \to \\
\frac{S}{\mathcal{R}} \to
\]