Example 3:
\(L = \{ w \mid w \text{ has an equal number of } a's, b's, \text{ and } c's \} \)

E.g.: \(abaccc \) \(b \in L \)

Step 1: \(S = a^p b^p c^p \) \(\text{IS} \leq 3p > p \) \(S \in L \)

Step 2:

Case 1: \(v \) or \(y \) contain 1 or more \(a's \)
\(v \) and \(y \) cannot contain \(c's \) since that would require \(|vxy| > p \)

Case 2: \(v \) or \(y \) contain 1 or more \(c's \)
\(v \) and \(y \) cannot contain \(a's \) since that would require \(|vxy| > p \)

Case 3: \(v \) and \(y \) contain just \(b \)

Note: \(v \) and \(y \) cannot contain all three letters as that would require \(|vxy| > p \)

Step 3:

Case 1: \(u \) \(v^2 \) \(x \) \(y^2 \) \(z \) contains more \(a's \) than \(c's \) so \(u \) \(v^2 \) \(x \) \(y^2 \) \(z \) \(\notin L \)

Case 2: \(u \) \(v^2 \) \(x \) \(y^2 \) \(z \) contains \(p \) \(c's \) and more than \(p \) number of \(a's \) so \(u \) \(v^2 \) \(x \) \(y^2 \) \(z \) \(\notin L \)

Case 3: \(u \) \(v^3 \) \(x \) \(y^2 \) \(z \) contains \(p \) number of \(a's \) and \(c's \) but the number of \(b's \) is larger than \(p \) so \(u \) \(v^3 \) \(x \) \(y^2 \) \(z \) \(\notin L \)