{ "cells": [ { "cell_type": "markdown", "id": "05b2c363-6646-4218-883e-c3b170bbb850", "metadata": {}, "source": [ "# Practicum 3 Review - Key Concepts" ] }, { "cell_type": "markdown", "id": "0f532022-4dd3-4f40-bd49-3e66b46a2905", "metadata": {}, "source": [ "## Logistics" ] }, { "cell_type": "markdown", "id": "f1f89142-dc67-42cb-bd32-400f19190797", "metadata": {}, "source": [ "- 1000 - 1150 on Wednesday, May 7th in Herrick 313\n", "- The format will be the same as the other practicums\n", "- The practicum is comprehensive with an emphasis on Chapters 13 thru 17" ] }, { "cell_type": "markdown", "id": "aaf6169f-5a3e-40c3-9f60-feede2882220", "metadata": {}, "source": [ "## Chapter 13 - Estimation" ] }, { "cell_type": "markdown", "id": "aeb8a483-b70d-4a5e-aa9d-fadf1dc2aa23", "metadata": {}, "source": [ "- percentile function (first quartile, median, third quartile)\n", "- bootstrap method (resampling from the sample)\n", "- confidence interval\n", "- using confidence intervals to test a null hypothesis (or alternative hypothesis)" ] }, { "cell_type": "markdown", "id": "cc8c0bd4-ffe1-42d5-b03c-e813156e3801", "metadata": {}, "source": [ "## Chapter 14 - Why the Mean Matters" ] }, { "cell_type": "markdown", "id": "04d9a693-51e7-4902-b84d-545770b41da3", "metadata": {}, "source": [ "- mean\n", "- standard deviation\n", "- standard units\n", "- normal curve (and cdf function)\n", "- Central Limit Theorem\n", "- Central Limit Theorem for Sample Mean (SD of all sample means = population SD / sqrt(sample size)" ] }, { "cell_type": "markdown", "id": "f50d1aa2-2b9a-4a21-8c41-feba54a71168", "metadata": {}, "source": [ "## Chapter 15 - Prediction" ] }, { "cell_type": "markdown", "id": "32d60762-5b9a-4620-b116-8ba9106f6b9d", "metadata": {}, "source": [ "- Correlation coefficient, r\n", "- Determining the regression line\n", "- Root Mean Square Error\n", "- minimize function\n", "- Residual (and visual diagnostics)" ] }, { "cell_type": "markdown", "id": "eeaa75f4-42b4-4e16-a887-2103f3517ba3", "metadata": {}, "source": [ "## Chapter 16 - Inference for Regression" ] }, { "cell_type": "markdown", "id": "07772741-a705-46c7-ac7c-8fce7359d186", "metadata": {}, "source": [ "- Estimating the true slope\n", "- Making predictions\n", "- Bootstrap prediction intervals" ] }, { "cell_type": "markdown", "id": "14cd6c10-2b98-460c-8c9e-46e4db0cec48", "metadata": {}, "source": [ "## Chapter 17 - Classification" ] }, { "cell_type": "markdown", "id": "bd32c5d6-2a99-45e2-9369-dd2a1b856803", "metadata": {}, "source": [ "- K-Nearest Neighbors\n", "- Distance between points\n", "- Testing data vs. training data\n", "- Measuring accuracy of classifier" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.1" } }, "nbformat": 4, "nbformat_minor": 5 }