{ "cells": [ { "cell_type": "markdown", "id": "5f49849b-19c3-471f-97df-870c70fcce9b", "metadata": {}, "source": [ "# Practicum 2 Review - Key Concepts" ] }, { "cell_type": "markdown", "id": "1b709152-eb22-462f-bc09-4d6206462cf3", "metadata": {}, "source": [ "## Resources Allowed" ] }, { "cell_type": "markdown", "id": "3e147af6-95f4-4ed5-aa39-07707a5d8115", "metadata": {}, "source": [ "- Your laptop\n", "- Any Jupyter notebooks available on your laptop\n", "- Resources available from the course syllabus\n", "- Libraries introduced by Data 8 (e.g. datascience, numpy, etc.)\n", "- A double-sided sheet of notes\n", "- The internet (to submit your solution to Canvas, to access library reference documentation)\n", "- NOT allowed: All other uses of the internet (e.g. Generative AI, e-mail, stack overflow, asking Google how to do something, etc.)" ] }, { "cell_type": "markdown", "id": "e14442c0-8ac8-4a84-9c21-6c254aa064d3", "metadata": {}, "source": [ "## Chapter 9 - Randomness" ] }, { "cell_type": "markdown", "id": "c608242b-d6c3-4731-9ac8-e8f095ee90b5", "metadata": {}, "source": [ "- Use np.random\n", "- Augment arrays (np.append)\n", "- Conduct a simulation \n", "- Calculate simple probabilities" ] }, { "cell_type": "markdown", "id": "59fd9e82-c840-4961-8405-70fc45b14f8b", "metadata": {}, "source": [ "## Chapter 10 - Sampling and Empirical Distributions" ] }, { "cell_type": "markdown", "id": "7da18b82-dab4-4dcd-b004-56c9aeb8f58d", "metadata": {}, "source": [ "- Probability Sample\n", "- Random vs. Deterministic Sample\n", "- Convenience Sample\n", "- Statistic\n", "- some_table.sample(n), some_table.sample(n, with_replacement=False)\n", "- sample_proportions(sample_size, sample_proportions)" ] }, { "cell_type": "markdown", "id": "b9eddb65-6a87-4a26-aee5-dd71c19c91a1", "metadata": {}, "source": [ "## Chapter 11 - Testing Hypotheses" ] }, { "cell_type": "markdown", "id": "b79a8081-5716-42d1-889e-815fddc787fe", "metadata": {}, "source": [ "- Total Variation Distance (between 2 or more distributions)\n", "- Simulate a statistic (such as TVD)\n", "- P-value (statistically significant, highly statistically significant)" ] }, { "cell_type": "markdown", "id": "5a03d680-980e-4ce8-9581-8ac2dcbf6999", "metadata": {}, "source": [ "## Chapter 12 - Comparing Two Samples" ] }, { "cell_type": "markdown", "id": "41d2a214-5a5c-4b3b-b1d6-b36960727519", "metadata": {}, "source": [ "- A/B Testing\n", "- Causality vs. Association" ] }, { "cell_type": "markdown", "id": "6f85e3c5-1541-466a-8a2c-e6edff7926bb", "metadata": {}, "source": [ "## Chapter 13 - Estimation (material through 13.3)" ] }, { "cell_type": "markdown", "id": "a88d0d9b-166c-4e9d-a9b6-eb796414aea3", "metadata": {}, "source": [ "- percentile function (first quartile, median, third quartile)\n", "- bootstrap method (resampling from the sample)\n", "- confidence interval\n", "- using confidence intervals to test a null hypothesis (or alternative hypothesis)" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.13.7" } }, "nbformat": 4, "nbformat_minor": 5 }