

APPLICATION AND TESTING OF A COUGAAR AGENT-BASED
ARCHITECTURE

Mike Emery, John Paxton, Rick Donovan
Montana State University, Montana State University, Montana Tech

Bozeman MT, Bozeman MT, Butte MT
USA, USA, USA

emery@cs.montana.edu, paxton@cs.montana.edu, rdonovan@mtech.edu

ABSTRACT
The maturation of multi-agent systems permits
increasingly sensitive and security related problems to be
addressed. In particular, the Cougaar architecture has
demonstrated itself to possess significant scalability and
survivability features. In this paper, a wireless door-entry
security system built using Cougaar is discussed. The key
contribution of this paper is to begin a discussion
regarding how such a system can be tested for reliability
and accuracy. Testing multi-agent systems is a very
beneficial, yet challenging endeavour.

KEY WORDS
Agent Based Architectures, Cougaar, Testing

1. Introduction & Problem Statement

The work described in this paper is part of an
effort by The Rocky Mountain Agile Virtual Enterprises
Technical Development Center (RAVE) [1]. The goal of
RAVE, directed by Rick Donovan, is to connect
universities with light and moderate manufacturers in the
state of Montana in order to cooperate on large projects
beyond the scope of a single entity.
 RAVE and its partners are funded to develop an
agent based approach to detecting the presence of
unauthorized personnel in the Secure Area of regional
airports. The solution being constructed requires airport
personnel to carry biometrically enabled (fingerprint ID)
radio frequency identification cards (RFID cards).
Intelligent sensor nodes (ISNs) will be deployed on
various doors throughout the airport that lead to secure
areas. When a card is activated, the closest door receiving
a strong enough signal will open.
 Currently, the hardware that is required for a
solution to the above stated problem is being investigated
and developed. While the hardware is being developed, a
software simulation has been constructed in order to test
whether the intelligent sensor nodes (ISNs) operate
accurately. The remainder of this paper is organized as

follows. In section two, the underlying agent architecture
for the proposed solution, Cougaar, is introduced. In
section three, the underlying system architecture for the
solution is explained. In section four, validation
techniques are covered. Finally, in section five, future
work is discussed.

2. Cougaar Overview

Cougaar, an abbreviation of COGnitive Agent
Architecture, is a Java-based agent architecture that
provides a survivable base on which an application can be
built. A survivable base is one that can withstand man-
made hostile environments without suffering an abortive
impairment of its ability to accomplish its designated
mission. Cougaar is capable of handling large-scale
distributed applications and was developed as part of the
solution to the DARPA UltraLog project [2], a distributed
logistics application consisting of more than 1000 agents
distributed over 100 hosts. The resulting system is
completely open-source and covered by a BSD-equivalent
license [3]. Cougaar was selected over other agent
architectures [4] due to its affiliation with DARPA, the
fact that it is open source, the importance of security for
this particular project and its general applicability to the
problem at hand.

Each Cougaar node is composed of support
services and at least one agent with its own component
plug-ins, as illustrated in Figure 1. These plug-ins
communicate using a provided blackboard which supports
standard publish/subscribe semantics [5, 6].

Agents communicate with each other using a
built-in, asynchronous message-passing protocol called
the Message Transport Service (MTS) [7]. Agents may
also be grouped into a community based on a common
purpose or function. By combining a logical grouping
with the provided Community Service, additional
functionality, such as broadcast messaging to all members
of a given community is possible [5, 6].

487-098 153

mailto:emery@cs.montana.edu
mailto:paxton@cs.montana.edu
debbie

Figure 1. Cougaar Agent Internal Structure

3. System Architecture

These features of Cougaar make it an attractive
base system upon which to develop this application. One
Cougaar agent is assigned to each intelligent sensor node
(ISN).

In the simulation, there are two key assumptions
regarding the hardware. First, each restricted access door
has an ISN associated with it. Second, when an RFID card
is activated near an ISN, the closest ISN is the intended
target.

Using these two assumptions, the system
functions as follows. First, a person carrying an RFID
card approaches a restricted access door and activates the
RFID card. Second, each ISN within range picks up the
intensity of the signal and adds a timestamp, provided that
the intensity is above some minimal threshold. Third,
each ISN that picks up a signal broadcasts the signal that
it received. Fourth, after a certain amount of time elapses,
each ISN determines whether it received the strongest
RFID signal. Fifth, the ISN that received the strongest
signal will open its restricted access door, provided that
the authentication information is sufficient.

In the current simulation, all agents are contained
in a single computer. As Cougaar is not limited by the
hardware on which it runs, an entire society can function
normally while contained within a single system. This
allows for easier initial development and testing.

3.1 Node Design

Each ISN is an independent Cougaar agent with
several plug-ins. Cougaar provides the base system,
behaving much like an operating system in terms of
functionality. Additional capabilities and behaviours
must be added in the form of plug-ins. To modularize the
solution, three plug-ins were developed.

The Sensor Plug-in is responsible for interfacing
with the ISN and sending and receiving signals to other
agents in the community.

The Comparator Plug-in receives signals from
the local agent and from non-local agents. After allowing
sufficient time for other agents to respond to an RFID
signal, the Comparator Plug-in compares the local signal
with non-local ones. If the local signal's intensity is the

highest, the signal is relayed to the Authenticator Plug-in.
Otherwise, the signals are discarded.

The Authenticator Plug-in functions as a
gatekeeper. It sends a signal to an authentication server to
verify the access rights of the corresponding carrier. If the
carrier is allowed, the Authenticator Plug-in authorizes
the restricted access door to be opened.

3.2 Community Design

ISN agents are grouped into communities based
on physical location or function. For example, nodes in a
hallway containing several doors could be arranged into a
community. Other nodes providing various support
services are located in their appropriate community.
These communities are further contained by the greater
society that is the overall system. Figure 2 shows a simple
society layout involving a single community of ISNs and
the supporting administrative community. Each ISN is on
an individual machine, but the agents in the administrative
community could share a machine or be distributed across
many.

Figure 2. Society Diagram

3.3 Graphical Simulation

An interactive, graphical simulation was
implemented to demonstrate the behaviour of the system
visually. This simulation is composed of a GUI that
allows a user to generate carrier signals and set the
location of ISNs. The other component is a back-end
which interfaces directly to the Cougaar system via a
specialized node. Figure 3 shows the simulation GUI
running. The six doors might depict a hallway and Zone 1
might depict an isolated ISN that could be a door or
restricted area.

154

Figure 3. Simulation Screenshot

The back-end takes signals generated by the GUI
and forwards them to the appropriate agents. These
signals are generated by a mouse click and their intensity
is determined by the modified inverse distance formula
shown in Figure 4:

I x , y 1000
x 1 x 2

2 y 1 y 2
2

Figure 4. Simulation Intensity Equation

(x1, y1) gives the coordinates of the ISN and (x2,

y2) gives the coordinates of the RFID signal. The
underlying behaviour of the agents is logged and the
eventual results of the system, such as a door being
unlocked, are displayed.

4. Test Plan and Results

The GUI based simulation is very useful for
basic functionality testing and flaw discovery. However,
a non-graphical, file-based testing method was developed
to permit faster, more elaborate testing without the need
for user interaction. This file-based test method was used
for all trials to determine system correctness.

4.1 File-based Testing

The file tester more closely mimics the actual
behaviour of the system as it supports any configuration
of ISNs and RFID card activations. Test events consist of
four pieces of information generated by the RFID card:
the identity of the carrier, the x position of the card
activation, the y position of the card activation, and the
time in milliseconds at which the event occurred. For
example,

Mike-Emery 100 130 1000

A complete, sample file is shown in Figure 5.
The file begins with information regarding each ISN. An
ISN consists of four pieces of information: the name of

the ISN, the x position of the ISN, the y position of the
ISN, and the minimum threshold of intensity that is
required for the ISN to recognize a signal. Following the
ISN information is the RFID signal information, ordered
by the time that the signal is generated.

ISN-Name X-pos Y-pos Threshold
ISN-#1 100 100 15
ISN-#2 100 200 15

Carrier-Name X-pos Y-pos Time (ms)
Mike-Emery 100 130 1000
John-Paxton 100 160 1000
Rick-Donovan 125 140 2000

Figure 5. Sample Test File

The results are sent to a separate file for analysis.
Of primary interest are the eventual results of the
simulated signals. In Figure 6, the responses to the sample
file are shown. For example, in Figure 5 at time 1000,
both Mike and John activate their cards, but each person
is closer to a different node. In Figure 6, Mike is granted
access to ISN-#1 at time 1299, and John is granted access
to ISN-#2 at time 2211. The difference between the time
of activation and the time of authorization is discussed
further in section 4.2.

Carrier ISN Intensity File
Time

Actual
Time

Mike-Emery ISN-1 25.00 1000 1299

John-Paxton ISN-2 33.30 1000 2211

Rick-Donovan ISN-1 22.30 2000 3283
Figure 6. Sample Test Results File

A special testing agent is used for the file-based

testing. Testing information is provided to this agent via a
file, loaded when the system first starts. The testing agent
is responsible for sending signals to each ISN at the
appropriate time as well as collecting and logging the
results.

We devised a test methodology consisting of
eight different tests. The first two tests examined the
performance of a single ISN and the next six tests
examined the performance of two ISNs. The goal of these
eight tests is to validate the correctness of the solution by
providing the system with a set of boundary and expected
use authentication signals.

Test #1 consists of one ISN and one RFID
carrier. This is the most basic, proof-of-functionality test.
Signals are generated inside the ISN’s range, on the
boundary of the ISN’s range and outside of the ISN’s
range. Please see Figure 7 where squares denote ISNs,
circles show the boundary for an RFID signal to be
detected, and asterisks show locations where RFID cards
are activated. This test demonstrates the stand-alone
capability of one ISN. Test #2 consists of one ISN and
two carriers. Signals are generated (1) when one carrier is
inside the range and one carrier is not, (2) when both
carriers are within range, but at different distances, (3)

155

when both carriers are within range and at the same
distance, and (4) when both carriers are at the sensor. To
avoid repeating test cases from Test #1, card activations
by the two carriers always occur simultaneously.

Figure 7. Single ISN

The next six tests all investigate the performance

of two ISNs. These tests focus on the ability of the ISNs
to interact with each other correctly. Note: in tests where
two RFID carriers are present, they generate their RFID
signals simultaneously.

Test #3 (one RFID carrier) and Test #4 (two
RFID carriers) consider the case where two ISNs do not
have intersecting detection areas. This arrangement of
ISNs should be a common one in a regional airport and is
depicted in Figure 8. The carriers are situated in the same
manner as in Test #1 and Test #2.

Figure 8. Separate ISNs

Test #5 (one RFID carrier) and Test #6 (two
RFID carriers) consider the case where the two ISNs have
intersecting detection areas as depicted in Figure 9. A
single RFID carrier who is in range of each ISN should
only be admitted to the closer door. This ISN
arrangement is also quite common, especially in hallways
containing many doors in close proximity to one another.
In Test #5, the carrier is placed (1) within the range of
both ISNs but at different distances to each, (2) within the
range of both ISNs and at the same distance to each, (3)
within range of one ISN, but on the edge of the other ISN
and (4) on the edge of each ISN. Test #6 adds a case

where one carrier is in the overlapping area while the
other carrier is either outside both ranges or only inside
one.

Figure 9. Intersecting ISNs

Test est #8 (two
FID carriers) are both purely theoretical. In these tests,

the two

.2 Resu

In order to evaluate the performance of the
,

#7 (one RFID carrier) and T

R
ISNs occupy the same location, as depicted in

Figure 10. Any and all access attempts should be rejected
by the sensors, as neither ISN is closer to the RFID
carrier.

Figure 10. Identically Situated ISNs

4 lts

system an oracle program was created. The oracle takes
the test file and the results of the simulation and
determines whether the simulation performed correctly or
not.

Each test was performed 25 times. Tests 1, 2, 3,
and 4 all performed correctly 100% of the time. Tests 5,
6, 7, and 8 performed correctly 88% - 96% of the time.
When the results were incorrect, processor load was
higher than normal. Errors occurred during sustained
periods of 100% processor usage, such as when multiple
instances of the entire simulation were running
simultaneously. This resulted in ISN-to-ISN messages
being delayed, causing an ISN to make a decision before

156

all relevant messages were received. In these cases, more
than one ISN granted access to a single carrier request.

To consider how an error might occur, consider
the situation depicted in Figure 9 where a carrier is
standing in the intersecting area between the sensors, but
is closer to Sensor 1 then Sensor 2. This carrier attempts
to authenticate during a period of 100% processor load.
Both sensors relay their received signals to each other, but
the relay from Sensor 1 to Sensor 2 is delayed. Sensor 1
receives the relayed signal from Sensor 2, determines that
it is closer to the carrier, and authorizes access. Sensor 2,
however, has not yet received the relayed signal from
Sensor 1 before the timer expires. Consequently, it also
decides that it is closest to the carrier and grants access.
Later, the relayed signal from Sensor 1 is finally
processed by Sensor 2, but there is no associated local
signal, so it is discarded. The problem is caused primarily
by the asynchronous nature of Cougaar's message
transport service and thread handling [8] which does not
easily lend itself to time-sensitive operations. Cougaar
makes no guarantees as to the order of execution or to the
timely delivery of messages. When the solution is placed
on multiple machines (see Section 5), it is expected that
these time delays will significantly decrease, as the
processor load will be much lower per machine.

Several solutions to this problem exist, but at the
cost of additional time. For instance, an ISN could require
each other ISN to respond to every signal that it
broadcasts. This causes an increase of traffic within the
system by n*m messages, where n is the number of ISNs
broadcasting a signal and m is the number of ISNs in the
community. Another solution is to increase the time
allowed before an ISN makes a decision. The maximum
time is limited by how long users are willing to wait for
door access.

5. Future Directions

As additional hardware becomes available for the
project, the software focus will shift to running the
application on multiple machines. This will come first in
the form of simulation, followed later by integration of
functional hardware allowing for a proof-of-concept
demonstration.

With the addition of multiple machines, a central
logging service will also be added. This will allow events
relevant to each ISN to be gathered and stored in a central
management node [5]. A tool such as Lumbermill [9] can
then provide a UI front-end for analyzing the log files and
for archiving the results.

Another future direction is to investigate how the
architecture can be modified to allow one ISN to control
two doors. This scenario is cheaper from a hardware
standpoint, but will complicate the software. In this
scenario, we are allowed to make three assumptions.
First, each ISN is located at a door. Second, the other
door that is controlled by the ISN is the next closest door
to the ISN. Third, when a person activates an RFID card,
that person is standing in front of a door. With these three
assumptions, the problem is conceptually solvable.

Thus, there are many avenues that remain to be
explored. We are excited to continue our investigations.

6. References

[1] RAVE Overview.
http://www.umt.edu/urelations/rview/1000/virtual.htm

[2] UltraLog Web site, http://ultralog.net.

[3] Cougaar Web site. http://www.cougaar.org

[4] Network Agents Project.
http://sourceforge.net/projects/networkagent/

[5] Cougaar Developer's Guide, Version 11.4. BBN
Technologies. Available on [3]. 2004.

[6] Cougaar Architecture Document, Version 11.4. BBN
Technologies. Available on [3]. 2004.

[7] Helsinger, A., Thome, M. & Wright, T. Cougaar: A
Scalable, Distributed Multi-Agent Architecture.
Proceedings of IEEE SMC on Agent Architectures, The
Hague, 2004.

[8] Snyder, R. & MacKenzie, D. Cougaar Agent
Communities. Proceedings of Open Cougaar 2004, New
York, 2004.

[9] Lumbermill Web site.
 http://sourceforge.net/projects/lumbermill.

157

http://www.cougaar.org/
http://sourceforge.net/projects/networkagent/
http://sourceforge.net/projects/lumbermill

	ABSTRACT
	KEY WORDS

