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ABSTRACT 
 
Tuning a local Web site to generate better local search 
results is a time consuming and tedious process.  In this 
paper, we describe a technique that can help to automate 
this process.  Specifically, when a genetic algorithm is 
applied to a local search engine’s parameters, the 
performance of the local search engine can be improved.  
Once good values for the search engine have been 
learned, it is easy to identify local Web pages that are 
candidates for further improvement. 
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1.  Introduction 
 
The Customer Relationship Management (CRM) software 
developed by RightNow Technologies includes many 
features designed to streamline customer interaction.  One 
function of RightNow's CRM suite is a knowledge base 
where customers may ask questions that are answered by 
the software product rather than by company employees.  
The knowledge base works through spidering and 
indexing of a company's Web site, allowing pre-existing 
information to be utilized. [1, 2, 3] 
 
A fairly standard approach for spidering and indexing the 
Web site is used.  When a company installs RightNow's 
software, a service tech performs the configuration and 
spiders the company's Web site.  Initially, a list is built 
containing the location of words found on the page.  
These words can be found in the normal text body, HTML 
tags (e.g. H1), meta-tags and even URLs.  Finally an 
index is created from this list using the software's system 
of weighting. 
 
Unfortunately, a company's Web pages are often not 
optimized for local searching.  For example a company 
might place its name in the description meta-tag of every 
page on its Web site in order to rank its pages higher than 
its competitors’ pages on Internet-wide search engine 
rankings.  However, this homogeneous local structure 
might reduce a local search engine's ability to differentiate 
between the content of local pages. 

 
Because a company is in control of both its Web site and 
its local search engine, it should be possible to have its 
local search engine perform more accurately.  As it may 
be very labor intensive for the company to manually 
update and optimize each Web page,  a more reasonable 
request is to ask the local webmaster to alter a small 
subset of the Web site based on explicit given 
instructions. 
 
This problem can be approached in two ways.  First, the 
local search engine can be tuned using an automated 
process.  Second, changes to the Web site that cannot be 
made through automation can then be suggested.  The 
focus of this paper is on the first of these two approaches.  
The remainder of this paper is organized as follows.  
Section 2 presents relevant background on search engines 
and genetic algorithms.  Section 3 describes a method for 
automatically optimizing a local Web site.  Section 4 
presents some preliminary results.  Section 5 summarizes 
the findings and presents some ideas for future research. 
 
 
2.  Background 
 
2.1 Search Engine Background 
 
The search engine used in RightNow’s CRM product 
spiders and indexes a website through common spidering 
methods.  The important feature of this search engine is 
the system of weights used to create the index.  These 
weights act as multiplying factors when the score of a 
search term's occurrence in a document is calculated.  For 
example, if the search term is found in the title section of 
a Web page, and the title weight is 100, then the score of 
that term is multiplied by 100 and added to the 
document's score.  The score for each document is thus 
the sum of the search term occurrences multiplied by their 
weights.  The result of a search lists the pages based on 
their final scores in decreasing order.  The first column in 
Table 1 contains a list of some of the standard weights 
and the second column contains their default, pre-
optimized values.  The third column of Table 1 will be 
discussed later. 
 
A majority of the weight identifiers in Table 1 refer to 
simple HTML or Meta tags such as <title> or <h1>.  
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However the meaning of a few of the tags may not be 
obvious and their functions will be described below. 
 
The meta-description identifier refers to a search engine 
specific Meta tag.  This tag is only understandable to 
RightNow Technologies’ search engine.  It is not 
considered by most Internet-wide search engines and does 
not affect the page’s appearance in a browser. 
 
The multi-match weight is applied when more than one 
keyword occurs in a search.  For example, if the search 
terms are “rocking” and “chair” and both are found in a 
document, the multi-match weight is applied to the 
document.  This weight has no effect when the Boolean 
operator joining the two words is AND instead of OR. 
 
The backlink weight is applied as a multiplier to the ratio 
of the number of links coming into a page versus the 
number of links going out.  A page that has many 
outgoing links (such as a table of contents) will have its 
score reduced.  A page that has many incoming links 
(such as one that contains important information) will 
have its score enhanced.  When a Web site has a common 
tree-like structure, a high backlink weight causes leaf 
node pages to be boosted in the returned results. 
 

Weight Identifier Default Value First Test Case 
Results 

backlink 1000.0 510.0 
description 150.0 980.0 
keywords 100.0 66.0 
title 100.0 180.0 
meta-description 50.0 920.0 
heading 1 5.0 130.0 
heading 2 4.0 340.0 
heading 3 3.0 640.0 
heading 4 1.0 720.0 
heading 5 1.0 430.0 
author 1.0 440.0 
multi-match 1.0 170.0 
text 1.0 0.0 
url text 1.0 540.0 
date 0.35 140.0 
heading 6 0.0 0.0 
 

Table 1 

 
2.2 Genetic Algorithm Background 
 
A genetic algorithm (GA) is used to optimize the search 
engine parameters to achieve better rankings within the 
local Web site automatically.  Rather than writing a GA 
from scratch, GAlib’s prewritten functions were utilized 
[4].  GAlib is a collection of genetic algorithm functions 
written in C++. 
 
Goldberg’s Simple GA [5] is used in the initial 
experiments.  The main elements of the simple GA are 

standard mutation, standard crossover, elitism, and non-
overlapping populations.  The fitness function will be 
explained in Section 3. 
 
 
3.  Approach 
 
To produce better search engine rankings, the feature 
weights in the search engine’s configuration file need to 
be improved. 
 
Initially the Webmaster must supply training data.  He or 
she must identify the ranked pages that should result from 
a particular search query.  This information is stored in a 
batch file.  It is possible that user input can be used to 
create this batch file dynamically [6, 7].  This is discussed 
further in the conclusions and future directions section. 
 
The Web sites used for this experiment were created from 
11 newsgroup articles.  These articles were selected from 
a 20,000 article data set hosted on the UCI Knowledge 
Discovery in Databases Archive [8]. 
 
The articles were chosen for their structure and word 
count.  Larger documents tend to work better in a search 
engine simply because they are more likely to contain 
multiple instances of the search term.  The 11 selected 
articles were formatted by hand to include HTML 
formatting tags and relevant Meta tags.  
 
The GA begins by creating a random population of 
genomes.  Two different population sizes, 1000 and 
10000 were tested but the results were almost identical.  
All the data in this paper was collected from tests using 
populations of size 1000.  For the problem at hand, the 
genome contains 16 real numbers ranging from 0.0 to 
1000.0.  Each number corresponds to one of the weights 
shown in Table 1.  Random initial values is a commonly 
used technique for reducing the number of generations 
required for a genetic algorithm to converge upon an 
acceptable result.  There is evidence that the quality of the 
random number generator affects performance as well, 
but for these experiments, only GAlib’s built in random 
number generator was used [9, 10, 11].  In the future, 
experiments will be run using different random number 
generators. 
 
The GA executes for a predetermined number of 
generations.  Elitism is turned on to ensure that the fittest 
individual is retained from one generation to the next.  
The probability of mutation is set to 0.01 and the 
probability of crossover is set to 0.6.   
 
A fitness function is required for all GAs.  The fitness 
function for this problem is a distance measure between 
the top ten actual rankings of the Web pages and the top 
ten desired rankings from the batch file (if there are that 
many).  Equation 1 defines the fitness function where D is 
the absolute value of the difference between a page’s 
actual ranking and its desired ranking.  For example if a 
page’s actual ranking is 5 and its desired ranking is 2, 
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then the distance is 3.  In the batch file, if there are fewer 
than 10 desired rankings, then the unspecified positions 
are considered to match perfectly. 
 
 

 
Equation (1) 

 
 
 
There are two special cases for the fitness function.  First, 
if the page is not included in the top ten results in the 
actual rankings, but it should be according to the desired 
rankings, then D is set to 100 for that page.  Second, if the 
actual ranking matches the desired ranking, then D is set 
to -10 for that page.  This defines the largest possible 
distance to be 1000 and the smallest distance as -100.  
Substituting those values into the fitness function, the 
largest distance gives a fitness value of 1/1101 or 0.0009, 
and the smallest distance gives a perfect fitness value of 1. 
 
 
4.  Preliminary Results 
 
Twelve tests were performed on the 11 Web pages.  The 
search query “introduction” was used throughout the tests.  
Several of the test pages were large introductory texts and 
FAQs.  Each of these articles contained several 
occurrences of the query term “introduction” in a variety 
of HTML and Meta tags.  The other pages were argument 
style posts that contained few if any occurrences of the 
query term. 
 
The 12 tests were designed so that each one has a 
different desired ranking.  The first test’s desired ranking 
was realistic in the sense that a real Webmaster chose it.  
The desired results for the other 11 tests were picked at 
random. 
 
The tests performed show that some improvement in 
ranking is possible, although not guaranteed.  In four of 
the twelve tests, including the realistic one, perfect 
rankings were achieved.  In four other tests, the rankings 
were improved as the search engine weights were 
modified by the genetic algorithm.  In the remaining four 
tests, no improvement was attained beyond the initial 
random weighting.  The average distance between the 
actual and the desired ranking for these last four tests was 
5, which as shown in Figure 1, is a common initial 
distance.  This eliminates lucky initial ordering as a factor 
for lack of improvement. 
 
While 100% accuracy was achieved in some test cases, 
this level of accuracy was not always possible.  The main 
reason for the GA to fail to achieve perfect rankings lies 
in not allowing negative weighting.  For example, 
maintaining other factors constant, if one page has three 
occurrences of a keyword in its body text, while the 
another page has only one occurrence of the keyword in 
its body text, then no value for the body text weight will 

cause the second page to be ranked ahead of the first 
page.  The more pages that appear in the training file, the 
higher the chances are that there will be no perfect set of 
search engine weights. 
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Figure 1:  The actual distance between real and desired 

results plotted over the number of generations. 

 
In Figure 2, the average fitness values from the 12 tests 
are plotted against the number of generations.  It is helpful 
to review Equation 1 before proceeding.  The possible 
range of values from the fitness function is from 1 to 
1/1101.  However, it is necessary to realize that after 
excluding the perfect value of 1, the next best fitness 
value possible is 1/23 or 0.0435.  The score 1/23 comes 
from 8 perfect matches (d is -10 for each) and the two 
remaining pages being out of order by just one position (d 
is 1 for each).  For example, if the desired ranking was {5, 
2, 1, 3, 4, 6, 7, 8, 9, 0}, and the actual ranking was {5, 2, 
3, 1, 4, 6, 7, 8, 9, 0}, then the score would be 1/23.  The 
steps in the graph show where individual tests jump from 
1/23 to the optimal solution of 1.  By the 200th generation, 
four out of 12 of the tests achieved the desired ranking.  
These results might be a feature of the small search space.  
In the future, larger data sets should be studied. 
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Figure 2:  The average fitness values from 12 test cases 
plotted over the number of generations. 
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The dashed line in Figure 2 represents the performance 
using the default weights.  As mentioned briefly above, 
the default weights were chosen based on a combination 
of intuition and trial and error.  Interestingly, using the 
default weights was not an optimal solution for any of the 
12 tests, and the distance from the desired ranking for the 
one realistic test was 8.  While these default weights may 
make sense when considering which HTML and Meta 
tags are important, it is apparent that better configurations 
are often possible.  
 
One possible argument to support these lower results of 
the default weights is to hypothesize that the web pages 
being tested are not properly tagged.  If this is assumed 
true, using standard search engine optimization techniques 
could help the pages rank better.  [12, 13]  Unfortunately 
that position meets with a lot of resistance from real life 
Webmasters.  As discussed in the introduction, improving 
local search results automatically is one main goal of this 
research.  Therefore since these test Web pages are 
representative ones, they are relevant and valid for this 
research despite apparent shortcomings in design and 
content. 
 
The fitness function is not a smooth one (consider the -10 
bonus for a perfect match and the +100 penalty for a 
desired page not being listed in the top ten).  While Figure 
1 shows the average solution improving over time, it is 
difficult to see optimization occurring because the fitness 
values change non-linearly. 
 
In Figure 1, the average actual distance is plotted against 
the number of generations using a simplified fitness 
function.  The new fitness function does not reward 
perfect matches, nor does it add a penalty for desired 
results that do not appear in the top ten actual results. 
 
Using the simplified fitness function, improvement still 
occurs.  However, only one test now achieved the optimal 
solution.  To allow for a better comparison between the 
original fitness function and the simplified one, consider 
that the final average distance in Figure 2 (approximated 
from the final average fitness value) is approximately 2.  
Comparing that to the final average distance of 
approximately 3 in Figure 1, it is evident that the simpler 
function is not able to match the performance of the 
original equation.  However, even the simpler fitness 
function outperforms the default weights, as depicted by 
the dashed line in Figure 1. 
 
 
5.  Conclusions and Future Directions 
 
A genetic algorithm is not a magic bullet that can 
configure a search engine to rank pages perfectly.  
However, as this work shows, the performance of a local 
search engine can be improved.  The level of 
improvement attainable remains a future research 
question. 
 

The fitness function for this GA was not very smooth 
because of the addition of the perfect result reward of -10 
and the missing result penalty of 100.  That function 
performed better than using just the distance and ignoring 
the two special cases, but it seems likely that a smoother 
function that includes the special cases would perform 
even better.  Therefore the first area to look into will be 
developing a smoother fitness function. 
 
Multi-objective genetic algorithms are a possible research 
path to optimize the search engine weights for larger, 
more complex page sets [14]. 
 
For pages that are still ranked incorrectly after the search 
engine is optimized by a GA, weights in the configuration 
file can be used to make further recommendations for 
improvement.  For example, if the description weight is 
large and the misclassified page has no description, it 
seems appropriate to recommend writing a description for 
the page. 
 
Another way to deal with a misclassified page is to 
automatically generate a value to use in one of the search 
engine specific meta-tags.  This allows artificial content to 
be added to a page without altering its visible contents.  In 
general, altering the search engine specific meta-tags 
shouldn’t affect the page’s ranking with other Internet-
wide search engines [15].  Therefore, to deal with 
problem pages, the program could add artificial content to 
Web site meta-tags as a temporary solution, and then 
make recommendations for additional content to be added 
later by the Webmaster as time allows. 
 
The search engine configuration file weights can also be 
used to make design change suggestions.  For example, if 
the GA finds that the title tag’s weight should be very 
small, a recommendation could be made to use title tags 
more accurately.  (In general, the title of a web page is 
considered to be a very important aspect by many 
Internet-wide search engines.)  In this case, the small 
weight of the title tag likely indicates that the title tags are 
either written poorly or missing altogether. 
 
Because creating a batch file of desired rankings is 
tedious work for the Webmaster, it is worthwhile to 
explore alternate methods of discovering that information.  
As was mentioned in the approach section, it may be 
possible to unobtrusively collect information from users 
about which pages should be ranked higher or lower [6, 
7]. When a user conducts a search, statistics can be kept 
concerning what results the user chooses. The user’s final 
choice could be given special attention since it may be 
assumed that the user has found the information they were 
looking for.  However, caution is required when using 
implicit user data because the statistics can be easily 
misinterpreted.  For example, if a search engine returns 10 
results per page, it is likely that those 10 results will be 
clicked more often largely because they are on the first 
page, and not because they are more relevant. 
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More research is required in the area of implicit user 
feedback before it can be relied upon for the initial 
training data.  A more reasonable approach might be to 
bootstrap the search engine with the batch file created by 
the Webmaster, and then later refine the search engine by 
cautiously adding the data from implicit user feedback.  
This will be an interesting and challenging area to study 
when this research is put into use by real world search 
engine and actual implicit feedback can be gathered. 
 
Thus, although some initial progress has been made, 
much research remains.  We are excited to continue 
exploring this problem. 
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