

ADAPTIVE EVOLUTIONARY ALGORITHMS ON UNITATION, ROYAL

ROAD AND LONGPATH FUNCTIONS

J. Neal Richter, John Paxton

Computer Science Department, Montana State University,

357 EPS, Bozeman, Montana 59714

http://www.cs.montana.edu
{richter, paxton}@cs.montana.edu

ABSTRACT
Genetic algorithms (GAs) are powerful tools that allow

engineers and scientists to find good solutions to hard

computational problems using evolutionary principles. The

classic genetic algorithm suffers from the configuration

problem, the difficulty of choosing optimal parameter settings.

Genetic algorithm literature is full of empirical tricks,

techniques, and rules of thumb that enable GAs to be optimized

to perform better in some way by altering the GA parameters.

However these techniques are often analyzed on only a narrow

set of fitness functions. This paper is a first empirical step in

analyzing several parameter adaptive techniques on the unitation

class of fitness functions, where fitness is a function of the

number of ones in the binary genome.

KEY WORDS

Genetic Algorithms, Neural-Fuzzy-Genetic Systems,

Adaptive and Optimal Control

1. Introduction
The genetic algorithm (GA) is a powerful tool that allows

us to find solutions to problems that are poorly

understood, have many interdependencies, or are

otherwise too complex to solve directly. Modeled after

natural selection and the evolutionary process, the basic

GA is a population of possible solutions that is analyzed

for fitness and recombined to form the next generation.

This is repeated until a desirable solution is found [1].

The GA can be configured in many ways, and these

different setups can have strong effects on the solutions

found. Crossover operators, mutation operators, selection

operators, and population size are just a few of the many

parameters that are available to be modified or optimized

to fit a given fitness function.

The GA literature is crowded with papers on various

techniques researchers have found to set up these

parameters for various problem domains. Other

researchers have found interdependencies between

operators and formulated helpful heuristics to follow

when designing a GA system for a specific domain [1].

Many researchers agree that the classic GA has serious

flaws. It can be a robust method, although when setup

improperly that property diminishes. Chief among those

pitfalls is the inability of the classic GA to adapt to the

changing characteristics of the solution space as the

population moves around in it.

For example, a GA can have difficulty if the inherent

step-size of the algorithm (as defined by the operators) is

larger than the optimal step size of fitness landscape. Hill

climbing algorithms can suffer from the same problem.

This paper will concentrate on mutation-only

Evolutionary Algorithms and use several methods to

adapt the mutation rate. The experiments are restricted to

binary genomes on the unitation class of fitness functions

and one example of each of the Royal Road and LongPath

families of functions. Unitation functions are fitness

functions defined only by the number of ones in the

binary genome.

The Royal Road functions were designed by Holland and

coworkers to highlight the building block approach the

GA was thought to take in problem solving [1]. Horn et

al. designed the LongPath [2] also to highlight the

supposed building block explanation of GA function.

This empirical study is a preliminary step in a theoretical

analysis of these types of adaptive operators. The

experiments show a general failure of adaptive methods

on simple-looking unitation functions, while the adaptive

methods fare well on the well-known and challenging

Royal Road problem. The adaptive method also shows

improvement on the LongPath problem, which is fairly

easy for the basic GA.

2. Types of Parameter Adaptation

Hinterding et al. [3] surveyed general GA parameter

adaptation. They classify adaptation into four types and

four levels. The types are:

• static (unchanging parameters)

• deterministic dynamic (parameters changed with

a deterministic function)

487-804 381

debbie

• dynamic adaptive (parameters changed with

feedback)

• dynamic self-adaptive (adaptation method

encoded into chromosome).

The levels are:

• environmental (changing fitness function

response to individuals with a heuristic)

• population (any parameters affecting entire

population)

• individual (mutation rate, age of individuals)

• component (varying parameters for individual

genes).

2.1 Deterministic Dynamic

Deterministic mutation schedules are well known to the

GA community. They have been used for decades in the

Evolutionary Strategies literature [4]. Bäck and Schütz

[5] introduced the deterministically decreasing function

given in Equation 1. This function works on the theory

that higher mutation rates in early generations are good

for exploration and lower mutation rates in later

generations are good for exploiting the local fitness

landscape. T is the total number of generations the GA

will be run for and l is the length of the chromosome. The

mutation rate given by pBS(t) is bounded by (0, 1/2]. This

function showed good results on hard combinatorial

optimization problems. Note that it would be

advantageous to floor the function near 1/2l. Mutation

rates lower than this are rarely effective.

1

2
 () 2

1
BS

l
p t t

T

−
−

= +
−

 (1)

Droste [6] uses a cyclic mutation operator. The idea of

this operator is to try a number of different probabilities in

a repeated cycle, giving the GA many chances to use

different probabilities during the various natural stages of

the GA. The bounds of pDr(t) are [1/l, 1/2] and the

method cycles over log l different mutation probabilities.

2 (1)

if () 1/ 2, set () 1/

 ()
Dr

p t

p t p t n

p t −

> =

= (2)

2.2 Dynamic Adaptive

Thierens [7] introduced two mutation adaptive schemes.

The Constant Gain scheme is loosely patterned after the

Manhattan learning algorithm. Equation 3 contains the

mutation update specification. The exploration factor ω

and learning factor λ usually have different values (1 < λ

< ω). To avoid oscillations in the learning process λ is

restricted via ω > λ. Example values are λ=1.1 and

ω=1.5.

Thierens also introduced the Declining Adaptive mutation

scheme. This variant of the first scheme is intended to

promote a more aggressive step size while suppressing the

wild oscillations that can happen with high learning rate

λ. Equation 4 details the scheme.
Thierens’ Constant Gain adaptive mutation rule

1

2

3

1. Mutate the current individual (,) three ways

 (, /) ()

 (,) ()

 (,) ()

2. Select the fittest individual and corresponding

 new mutation rat

m

m

m

m

x p

x p x

x p x

x p x

ω

ω

Μ →

Μ →

Μ →

1 2 3

e

MAX{(,), (, /), (,), (,)}
m m m m

x p x p x p x pλ λ

 (3)

Thierens’ Declining Adaptive mutation rule

1

2

3

1. Mutate the current individual (,) three ways

 (,) ()

 (,) ()

 (,) ()

2. Decrease the mutation rate of the parent

 (,) (,)

3.

m

m

m

m

m m

x p

x p x

x p x

x p x

x p x p

ω

ω

γ

Μ →

Μ →

Μ →

→

1 2 3

 Select the fittest individual and corresponding

 new mutation rate

MAX{(,), (,), (,), (,)}
m m m m

x p x p x p x pγ λ λ

(4)

The difference between the two schemes is that the

second contains no method to increase the mutation rate

and that the current mutation rate will decrease unless

there is success at the current rate. Factor bounds are as

follows: λ>1, ω>1 and 0.9<γ<1. Typical settings are

λ=2.0, ω=2.0 and γ=0.95.

Rechenberg introduced the ‘1/5 success rule’ for

Evolutionary Strategies [4]. The basic idea is to adapt the

mutation rate to balance the percentage of fitness-

beneficial mutations at 1/5. This rule, shown in Equation

6, is applied periodically and not during every generation.

A typical value for the learning rate is λ=1.1.

Rechenberg’s 1/5 success rule

 if () 1/ 5 (/)

 if () 1/ 5 ()

 if () 1/ 5 ()

Where () is the percentage of sucessful

 mutations over generations and is

the learning rate.

m

m

m

k p

k p

k p

k

x

ϕ λ

ϕ

ϕ λ

ϕ

λ

< →

= →

> →
(5)

2.3 Dynamic Adaptive with Fuzzy Logic

Shi, et al. [8] introduced a fuzzy logic rule set for

adapting the mutation and crossover rate. Figure 1 gives

the rule set associated with the mutation rate. This rule

set does require providing fuzzy membership functions

for the various metrics and mutation rates.

382

IF BF is low or medium THEN MR is low

IF BF is medium and UN is low THEN MR is low

IF BF is medium and UN is medium THEN MR is medium

IF BF is high and UN is low THEN MR is low

IF BF is high and UN is medium THEN MR is medium

IF UN is high THEN MR is random(high, med, low)

Figure 1. Shi et al. Fuzzy adaptive rule set for mutation.

BF = Best Fitness, UN = Number of generations since last

BF change, MR = Mutation Rate

Improvement over a GA with fixed parameters was

shown using this rule set for evolving classifier systems.

For the purposes of this paper the Sugeno method output

functions was used. The Sugeno fuzzy method [9]

assigns either constant or linear functions to the output of

the fuzzy inferencing method, rather than defining fuzzy

membership functions for output. Here this means that

three different mutation rates were chosen, one for each

fuzzy output.

The original Shi et al. rule set used a metric called

‘variance of fitness’ with high, med and low fuzzy

memberships. For this paper that metric was eliminated

and three rules were combined to form the last rule in

Figure 1.

3. Functions of Unitation

Unitation functions are fitness functions where fitness is a

function of the count of ones in a chromosome x:{1,0}
l
,

where l is the length of the chromosome of the GA. All

fitness values are non-negative:

u(x):{0,1}
l
 → �

+
 (6)

An example function for 3 bits is

 u(0) = 3 u(1) = 2 u(2) = 1 u(3) = 4

This definition allows us to reduce the dimensionality of

any analysis from 2
l
 to (l+1). This is useful in that

theoretical analysis of these functions is computationally

easier while still using a function with a complex

Hamming landscape.

3.1 Example Functions

The three fitness functions given in Equation 7 and

pictured in Figure 1 are called NEEDLE, BINEEDLE and

ONEMAX, and have been theoretically studied for fixed

parameter simple GAs by Rowe [10], Wright [11] and

Richter et al. [12]. The ONEMAX fitness function has

been called the ‘fruit fly’ of GA research [7]. Here l=10

and α=9 are used for NEEDLE and BINEEDLE.

stringin ones ofnumber ONEMAX

string zeros all1

otherwise1

string ones all1

BINEEDLE

otherwise1

string ones all1
NEEDLE

=

+

+

=

 +

=

α

α

α

 (7)

Figure 2. NEEDLE, BINEEDLE and ONEMAX fitness

functions.

3.2 Deceptive Functions

Trap functions are piecewise linear functions that divide

the search space into two Hamming space basins [13].

Each basin has an optimal point, one of which is the

global optimum. In Deb and Goldberg [13], a set of

conditions for calling a fitness function 'fully deceptive' is

given. A fully deceptive function, referred to here as

DECTRAP, from [13] is detailed in Equation 8.

1 if ()

 () 10* 1 ()
1 otherwise

u x l

f x u x

l

=

= +
−

(8)

Figure 3 illustrates DECTRAP. The trap function is at

fitness of 9 for the all zeros string, and is fitness 10 for the

all ones string. The all zeros basin of attraction takes up

the majority of the function space.

Figure 3. Fully deceptive trap functions DECTRAP.

Figure 4 illustrates a trap function containing two traps,

referred to as 2TRAP. This trap was formed in an ad-hoc

manner to build a landscape with a large sub-optimal

basin at the center of distribution of the unitation classes.

383

Figure 4. Double trap function 2TRAP.

Figure 5 and Equation 9 show a deceptive double trap

function, or DEC2TRAP. This function is modeled after

the fully deceptive function given in [13].

1 if () / 2

1 ()
() 10* 1 if () / 2

/ 2

() / 2 1
if () / 2

/ 2

u x l

u x
f x u x l

l

u x d
u x l

l

 =

+
= − <

− −

>

(9)

Figure 5. Deceptive double trap function DEC2TRAP.

4. Royal Road and LongPath

Mitchell et al. [14] crafted a fitness function called the

‘Royal Road’ which was intended to highlight the

building block nature of the GA. The Royal Road is a

collection of bit patterns that assigns progressively higher

fitness to bit strings that build up long sequences of

shorter bit patterns. A modest example for 6-bit strings is

given in Equation 10. This paper uses a common

reference implementation with 16 blocks (each of size 4

bits), a gap-size of 3bits and a 2-bit reward threshold.

This forms a genome of 128 bits. See the authors code

[15] for more details.

{11****, **11**, ****11} fitness = 2

{1111**, 11**11, **1111} fitness = 4

{111111} fitness = 8

(10)

Horn et al. designed a fitness function called LongPath.

This function is crafted by choosing a desired path length

k < 2
l
. Next a path from a starting bit-string to an ending

bit-string is constructed such that it takes k one-bit

mutations to ‘follow’ the path. Each point on the path is

one ‘hamming distance’ away from each neighbouring

point. Equation 11 shows a simple example for a 6-bit

genome. This paper uses a 9-bit path detailed in Rudolph

[16]. The reader is encouraged to examine the code [15]

for more details.

12-path is {000000, 000001, 000011, 000010, 000110,

000100, 001100, 001000, 011000, 010000, 110000,

100000}
(1)/ 2

(1)/ 2

1

3*2 2 () if is on the path
 ()

3*2 2 || || otherwise

l

l

Pos x x
f x

x

−

−

 − −
=

− +

Where Pos(x) is the number of the step in the path the

genome is on. 000110 is the 4th step in a zero based

count for the path above.

(11)

5. Algorithms and Experiments

Thierens [7] applied his two dynamic adaptive schemes as

well as fixed rate and one deterministic scheme to the

ONEMAX (or Counting Ones) problem. He used the

well-known (1+1) EA strategy [6] for the fixed mutation

rate and deterministic schemes and the (1+3) EA for his

adaptive schemes. Different variants made the

comparison more difficult. Algorithm 1 gives the (1+3)

EA.

Algorithm 1: The (1+3) EA
1

1. Choose p(n) � (0,1/2]

2. Choose x � {0,1}
d
uniformly at random.

3. Create three children {a,b,c} by flipping each bit of x

independently with p(n).

4. Select x := max(x, a, b, c)

5. Update p(n) according to some scheme Optional

6. Continue at line 3

Algorithm 1 will be applied to the five unitation functions

given above with each of the seven mutation rate

schedules/schemes also given above. One each of the

Royal Road and LongPath functions are also used for the

seven schedules. This totals 49 experiments. Each

experiment will have 25 trials run. Note that 20-bit

versions of the unitation functions are used. The basic

shape of each unitation fitness function is the same as

presented before.

For Rechenberg’s rule, λ=1.1 is used. Constant Gain

settings are λ=1.1 and ω=1.5. The Declining Adaptive

method used λ=2.0, ω=2.0 and γ=0.95. For the Shi fuzzy

rule set, the fuzzy assignments of mutation rate are:

high=4/d, med=2/d, low=1/d.

6. Experimental Results

Table 1 shows the results for the ONEMAX function. For

each adaptive method there is an average and standard

deviation for the number of fitness function evaluations

1
 The (1+1) EA produces only 1 child in step 3. Step 4

chooses the maximum fitness of the parent and child.

384

performed. The ‘Failed Runs’ column gives a count of

the number of GA runs that failed to find the optimal

solution in 1000 generations.

 All performed comparatively with the exception of Bäck-

Schütz, the clear loser. Rechenberg had the best

performance with a low average and a tight standard

deviation. The rest of the methods are generally grouped

together within the standard deviation of one another,

meaning that they are statistically equivalent methods.

The NEEDLE and DECTRAP results are in Table 2. No

run of the GA resulted in any scheme finding the optimal

points of either fitness landscape. The NEEDLE function

is hard and likely needs a very high number of mutations

to get enough coverage of the 2
l
 fitness landscape to find

the ‘needle’. All of the algorithms were able to ascend to

the local maxima of DECTRAP with performance similar

to the ONEMAX results. This should also be not

surprising since the DECTRAP function’s landscape is a

near clone of ONEMAX.

Mutation

scheme

Avg

num of

fitness

evals

Std dev

num of

fitness evals

Failed runs

Static rate

Droste

Bäck-.Schütz

298

181

815

159

87

275

11

-

1

Constant Gain

Declining

Rechenberg

259

142

99

223

81

22

-

-

-

Shi 158 83 -
Table 1. ONEMAX results

Mutation

scheme

Failed runs

Static rate

Droste

Bäck-Schütz

25

25

25

Constant Gain

Declining

Rechenberg

25

25

25

Shi 25
Table 2. NEEDLE and DECTRAP results

The DEC2TRAP results are given in Table 3. Again the

various methods had much difficulty, only the Droste and

Bäck-Schütz schemes were successful at frequently

finding the global optima, and finding it quickly. The

other methods were total failures. This result is surprising

since the DEC2TRAP function does contain a reasonably

sized fitness basin centered around the optimal point. It’s

likely that these methods would be more successful on 50

and 100 bit versions of DEC2TRAP. The optimal fitness

basins in those cases would be quite large.

Mutation

scheme

Avg

num of

fitness

evals

Std dev

num of

fitness evals

Failed runs

Static rate

Droste

Bäck-.Schütz

-

33

42

-

37

34

25

6

-

Constant Gain

Declining

Rechenberg

-

NS

-

-

NS

-

25

21

25

Shi - - 25
Table 3. DEC2TRAP results

In comparison to DEC2TRAP there is a performance

reversal with 2TRAP. See Table 4 for details. The

successful dynamic schemes that worked quickly on

DEC2TRAP were total failures on 2TRAP. The reversal

continues to an extent with the adaptive methods. These

methods found the optimal points at least 10 times each

and required a relatively few number of fitness

evaluations. The fuzzy method did escape total failure on

DEC2TRAP by finding the optimal in 5 of the 25 runs.

Mutation

scheme

Avg

num of

fitness

evals

Std dev

num of

fitness evals

Failed runs

Static rate

Droste

Bäck-Schütz

210

-

-

65

-

-

22

25

25

Constant Gain

Declining

Rechenberg

56

73

41

26

59

20

14

10

15

Shi 56 9 20
Table 4. 2TRAP results

Table 5 shows the results for the 128-bit Royal Road

function. Algorithm 1 was run for a maximum of 20,000

generations. All of the adaptive methods except

Rechenberg performed well on this function with the

Bäck-Schütz scheme the clear winner, as it has the lowest

average and the tightest standard deviation. The failure of

Rechenberg is so far unexplained; λ=1.1 and λ=2.0 were

tried with the same failure result.

Mutation

scheme

Avg

num of

fitness

evals

Std dev

num of

fitness evals

Failed runs

Static rate

Droste

Bäck-Schütz

-

28,312

18,615

-

12,413

5,251

25

6

-

Constant Gain

Declining

Rechenberg

25,678

27,548

-

12,865

10,036

-

1

-

25

Shi 20,340 9,232 -
Table 5. Royal Road results

385

Table 6 gives the results for the LongPath function. All

adaptive schemes fared well on this fairly easy function.

The Thierens’ Declining rule won out with the lowest

average and tight standard deviation.

Mutation

scheme

Avg

num of

fitness

evals

Std dev

num of

fitness evals

Failed runs

Static rate

Droste

Bäck-Schütz

471

157

232

56

104

165

-

-

-

Constant Gain

Declining

Rechenberg

235

129

225

133

83

134

-

-

-

Shi 158 103 -
Table 6. LongPath results

In both the Royal Road and LongPath functions, the static

mutation rate was well outperformed by the adaptive

schemes.

7. Conclusion

There are many methods known in the literature for

adapting GA parameters. It is also common to see these

methods perform well in those papers. However, when a

systematic experiment with a variety of methods is

applied to a set of fitness functions displaying basic

characteristics, the methods show very mixed results.

It is worth noting that combinations of the fitness

functions above can be used to construct a wide variety of

complex landscapes. The results above can be used as a

guide to how a particular adaptive scheme might perform

in a certain situation. For instance, if a more complex

fitness landscape contains ‘hills’ followed by a flat

‘plateau’, an adaptive GA is likely to climb the hill well

then get stuck in the plateau.

Of course, this problem exists in non parameter-adaptive

GAs. However, simply adding adaptive schemes and

heuristics does not necessarily cure the GA of the types of

problems commonly seen in the analysis of a typical run

of the GA. The No Free Lunch theorem of Wolpert and

MacReady [17] is a general proof for GAs that one can

not claim that a GA with a fancy operators is provably

better than any other GA. Reeves and Rowe [18] detail

the No Free Lunch theorem as well as the debate

concerning the Building Block Hypothesis.

References:

[1] M. Mitchell, An Introduction to Genetic Algorithms

(Complex Adaptive Systems Series). Cambridge, MA: MIT

Press, 1996.

[2] J. Horn, D. E. Goldberg, and K. Deb. Long path problems.

In Proc. of PPSN III (Parallel Problem Solving from

Nature), LNCS 866, pages 149--158, Springer, Berlin.

1994.

[3] R Hinterding, Z. Michalewicz, and A.E. Eiben, “Adaption

in evolutionary computation: a survey,” in Proc. of 1997

IEEE Conf. on Evolutionary Computation (ICEC`97),

1997, pp. 65-69.

[4] H.-G. Beyer. The Theory of Evolution Strategies. Natural

Computing Series. Springer, Heidelberg, 2001.

[5] Thomas Bäck and M. Schütz. Intelligent mutation rate

control in canonical genetic algorithms. Proceedings of the

9th International Symposium, ISMIS 96, pages 158--167,

June 1996. Springer-Verlag, Berlin (Germany).

[6] S. Droste, T. Jansen, I. Wegener, Dynamic parameter

control in simple evolutionary algorithms, Proc.

Foundations of Genetic Algorithms, Vol. 6, 2001, pp. 275-

294.

[7] Thierens, D. (2002). Adaptive mutation rate control

schemes in genetic algorithms.. In (Ed.), Proceedings of the

2002 IEEE World Congress on Computational Intelligence:

Congress on Evolutionary Computation (pp. 980-985).

IEEE Press.

[8] Y. Shi, RC Eberhart, and Y. Chen. Implementation of

Evolutionary Fuzzy Systems. IEEE Trans. Fuzzy Systems,

7(2):109-119, 1999 .

[9] T.J. Ross, Fuzzy Logic with Engineering Applications.

McGraw-Hill, New York. 1995.

[10] Rowe, J.: Population fixed-points for functions of unitation.

In Foundations of Genetic Algorithms. Vol. 5. Colin

Reeves, and Wolfgang Banzhaf (eds.). Morgan Kaufmann,

(1998) 69-84.

[11] Wright A.H., Rowe J.E., Neil, J.R.: Analysis of the Simple

Genetic Algorithm on the Single-peak and Double-peak

Landscapes, Proc. of the 2002 Congress on Evolutionary

Computation, Fogel et al. Editors, IEEE Press (1999), 214-

219.

[12] Richter J.N, Paxton, J. Wright, A. EA Models and

Population Fixed Points Versus Mutation for Functions of

Unitation. To appear in Proceedings of GECCO 2005.

Washington, D.C. July 2005.

[13] Deb, K., Goldberg, D.E.: Analyzing Deception in Trap

Functions. In Foundations of Genetic Algorithms, Vol. 2. D

Whitley, editor. Morgan Kaufmann, (1992): 93-108.

[14] Mitchell, M., Forrest, S., and Holland, J. H. (1992). The

royal road for genetic algorithms: Fitness landscapes and

GA performance. In Proceedings of the First European

Conference on Artificial Life. Cambridge, MA: MIT

Press/Bradford Books.

[15] http://www.cs.montana.edu/~richter/iasted_2005_code.php

[16] G. Rudolph. Convergence Properties of Evolutionary

Algorithms. Verlag Dr. Kovac, Hamburg, 1997.

[17] D. H. Wolpert and W. G. MacReady. No free lunch

theorems for optimization. IEEE Transactions on

Evolutionary Computation, April 1996.

[18] CR Reeves, JE Rowe, Genetic Algorithms - Principles and

Perspectives.. Kluwer Academic, Boston MA, 2003

386

