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ABSTRACT 
Genetic algorithms (GAs) are powerful tools that allow 

engineers and scientists to find good solutions to hard 

computational problems using evolutionary principles. The 

classic genetic algorithm suffers from the configuration 

problem, the difficulty of choosing optimal parameter settings. 

Genetic algorithm literature is full of empirical tricks, 

techniques, and rules of thumb that enable GAs to be optimized 

to perform better in some way by altering the GA parameters.  

However these techniques are often analyzed on only a narrow 

set of fitness functions.  This paper is a first empirical step in 

analyzing several parameter adaptive techniques on the unitation 

class of fitness functions, where fitness is a function of the 

number of ones in the binary genome. 
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1.  Introduction 
The genetic algorithm (GA) is a powerful tool that allows 

us to find solutions to problems that are poorly 

understood, have many interdependencies, or are 

otherwise too complex to solve directly. Modeled after 

natural selection and the evolutionary process, the basic 

GA is a population of possible solutions that is analyzed 

for fitness and recombined to form the next generation. 

This is repeated until a desirable solution is found [1].  

 

The GA can be configured in many ways, and these 

different setups can have strong effects on the solutions 

found.  Crossover operators, mutation operators, selection 

operators, and population size are just a few of the many 

parameters that are available to be modified or optimized 

to fit a given fitness function. 

 

The GA literature is crowded with papers on various 

techniques researchers have found to set up these 

parameters for various problem domains. Other 

researchers have found interdependencies between 

operators and formulated helpful heuristics to follow 

when designing a GA system for a specific domain [1]. 

 

Many researchers agree that the classic GA has serious 

flaws. It can be a robust method, although when setup 

improperly that property diminishes. Chief among those 

pitfalls is the inability of the classic GA to adapt to the 

changing characteristics of the solution space as the 

population moves around in it. 

 

For example, a GA can have difficulty if the inherent 

step-size of the algorithm (as defined by the operators) is 

larger than the optimal step size of fitness landscape.  Hill 

climbing algorithms can suffer from the same problem. 

 

This paper will concentrate on mutation-only 

Evolutionary Algorithms and use several methods to 

adapt the mutation rate.  The experiments are restricted to 

binary genomes on the unitation class of fitness functions 

and one example of each of the Royal Road and LongPath 

families of functions.  Unitation functions are fitness 

functions defined only by the number of ones in the 

binary genome.   

 

The Royal Road functions were designed by Holland and 

coworkers to highlight the building block approach the 

GA was thought to take in problem solving [1].  Horn et 

al. designed the LongPath [2] also to highlight the 

supposed building block explanation of GA function.   

 

This empirical study is a preliminary step in a theoretical 

analysis of these types of adaptive operators.   The 

experiments show a general failure of adaptive methods 

on simple-looking unitation functions, while the adaptive 

methods fare well on the well-known and challenging 

Royal Road problem.  The adaptive method also shows 

improvement on the LongPath problem, which is fairly 

easy for the basic GA. 

 

2.  Types of Parameter Adaptation 

 
Hinterding et al. [3] surveyed general GA parameter 

adaptation. They classify adaptation into four types and 

four levels.  The types are: 

• static (unchanging parameters) 

• deterministic dynamic (parameters changed with 

a deterministic function) 
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• dynamic adaptive (parameters changed with 

feedback) 

• dynamic self-adaptive (adaptation method 

encoded into chromosome). 
 

The levels are: 

• environmental (changing fitness function 

response to individuals with a heuristic) 

• population (any parameters affecting entire 

population) 

• individual (mutation rate, age of individuals) 

• component (varying parameters for individual 

genes). 
 

2.1 Deterministic Dynamic 

 

Deterministic mutation schedules are well known to the 

GA community.  They have been used for decades in the 

Evolutionary Strategies literature [4].  Bäck and Schütz 

[5] introduced the deterministically decreasing function 

given in Equation 1.  This function works on the theory 

that higher mutation rates in early generations are good 

for exploration and lower mutation rates in later 

generations are good for exploiting the local fitness 

landscape. T is the total number of generations the GA 

will be run for and l is the length of the chromosome.  The 

mutation rate given by pBS(t) is bounded by (0, 1/2].  This 

function showed good results on hard combinatorial 

optimization problems.  Note that it would be 

advantageous to floor the function near 1/2l.  Mutation 

rates lower than this are rarely effective. 

 
1

2
   ( ) 2

1
BS
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p t t
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= + 
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Droste [6] uses a cyclic mutation operator. The idea of 

this operator is to try a number of different probabilities in 

a repeated cycle, giving the GA many chances to use 

different probabilities during the various natural stages of 

the GA.  The bounds of  pDr(t) are [1/l, 1/2] and the 

method cycles over log l different mutation probabilities. 
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2.2 Dynamic Adaptive 

 

Thierens [7] introduced two mutation adaptive schemes.  

The Constant Gain scheme is loosely patterned after the 

Manhattan learning algorithm.  Equation 3 contains the 

mutation update specification.  The exploration factor ω 

and learning factor λ usually have different values (1 < λ 

< ω).  To avoid oscillations in the learning process λ is 

restricted via ω > λ.  Example values are λ=1.1 and 

ω=1.5. 

Thierens also introduced the Declining Adaptive mutation 

scheme.  This variant of the first scheme is intended to 

promote a more aggressive step size while suppressing the 

wild oscillations that can happen with high learning rate 

λ.  Equation 4 details the scheme. 
Thierens’ Constant Gain adaptive mutation rule 
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Thierens’ Declining Adaptive mutation rule 
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(4) 

 

The difference between the two schemes is that the 

second contains no method to increase the mutation rate 

and that the current mutation rate will decrease unless 

there is success at the current rate.  Factor bounds are as 

follows: λ>1, ω>1 and 0.9<γ<1.  Typical settings are 

λ=2.0, ω=2.0 and γ=0.95. 

 

Rechenberg introduced the ‘1/5 success rule’ for 

Evolutionary Strategies [4].  The basic idea is to adapt the 

mutation rate to balance the percentage of fitness-

beneficial mutations at 1/5.  This rule, shown in Equation 

6, is applied periodically and not during every generation.  

A typical value for the learning rate is λ=1.1. 

 
Rechenberg’s 1/5 success rule 
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2.3 Dynamic Adaptive with Fuzzy Logic 
 

Shi, et al. [8] introduced a fuzzy logic rule set for 

adapting the mutation and crossover rate.  Figure 1 gives 

the rule set associated with the mutation rate.  This rule 

set does require providing fuzzy membership functions 

for the various metrics and mutation rates.   
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IF BF is low or medium THEN MR is low 

IF BF is medium and UN is low THEN MR is low 

IF BF is medium and UN is medium THEN MR is medium 

IF BF is high and UN is low THEN MR is low 

IF BF is high and UN is medium THEN MR is medium 

IF UN is high THEN MR is random(high, med, low) 

 

Figure 1. Shi et al. Fuzzy adaptive rule set for mutation. 

BF = Best Fitness, UN = Number of generations since last 

BF change, MR = Mutation Rate  
 

Improvement over a GA with fixed parameters was 

shown using this rule set for evolving classifier systems.  

For the purposes of this paper the Sugeno method output 

functions was used.  The Sugeno fuzzy method [9] 

assigns either constant or linear functions to the output of 

the fuzzy inferencing method, rather than defining fuzzy 

membership functions for output. Here this means that 

three different mutation rates were chosen, one for each 

fuzzy output. 

The original Shi et al. rule set used a metric called 

‘variance of fitness’ with high, med and low fuzzy 

memberships.  For this paper that metric was eliminated 

and three rules were combined to form the last rule in 

Figure 1. 

 

3.  Functions of Unitation 

 

Unitation functions are fitness functions where fitness is a 

function of the count of ones in a chromosome x:{1,0}
l
, 

where l is the length of the chromosome of the GA.  All 

fitness values are non-negative:  

 

u(x):{0,1}
l
  →  �

+
   (6) 

An example function for 3 bits is 

 

 u(0) = 3 u(1) = 2 u(2) = 1  u(3) = 4 

 

This definition allows us to reduce the dimensionality of 

any analysis from 2
l
 to (l+1).  This is useful in that 

theoretical analysis of these functions is computationally 

easier while still using a function with a complex 

Hamming landscape. 

 

3.1 Example Functions 

 

The three fitness functions given in Equation 7 and 

pictured in Figure 1 are called NEEDLE, BINEEDLE and 

ONEMAX, and have been theoretically studied for fixed 

parameter simple GAs by Rowe [10], Wright [11] and 

Richter et al. [12].   The ONEMAX fitness function has 

been called the ‘fruit fly’ of GA research [7].  Here l=10 

and α=9 are used for NEEDLE and BINEEDLE.   
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otherwise1
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 (7) 

 

 
Figure 2.  NEEDLE, BINEEDLE and ONEMAX fitness 

functions. 

 

 

3.2 Deceptive Functions 
 

Trap functions are piecewise linear functions that divide 

the search space into two Hamming space basins [13].  

Each basin has an optimal point, one of which is the 

global optimum.  In Deb and Goldberg [13], a set of 

conditions for calling a fitness function 'fully deceptive' is 

given.  A fully deceptive function, referred to here as 

DECTRAP, from [13] is detailed in Equation 8. 
 

1 if ( )

   ( ) 10* 1 ( )
1 otherwise

u x l

f x u x

l

= 
 

= + 
−  

 
(8) 

 

Figure 3 illustrates DECTRAP.  The trap function is at 

fitness of 9 for the all zeros string, and is fitness 10 for the 

all ones string.  The all zeros basin of attraction takes up 

the majority of the function space. 

 
Figure 3. Fully deceptive trap functions DECTRAP. 

Figure 4 illustrates a trap function containing two traps, 

referred to as 2TRAP.   This trap was formed in an ad-hoc 

manner to build a landscape with a large sub-optimal 

basin at the center of distribution of the unitation classes. 
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Figure 4.  Double trap function 2TRAP. 

Figure 5 and Equation 9 show a deceptive double trap 

function, or DEC2TRAP.  This function is modeled after 

the fully deceptive function given in [13]. 
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Figure 5. Deceptive double trap function DEC2TRAP. 

 

4. Royal Road and LongPath 
 

Mitchell et al. [14] crafted a fitness function called the 

‘Royal Road’ which was intended to highlight the 

building block nature of the GA.  The Royal Road is a 

collection of bit patterns that assigns progressively higher 

fitness to bit strings that build up long sequences of 

shorter bit patterns.  A modest example for 6-bit strings is 

given in Equation 10.  This paper uses a common 

reference implementation with 16 blocks (each of size 4 

bits), a gap-size of 3bits and a 2-bit reward threshold.  

This forms a genome of 128 bits.  See the authors code 

[15] for more details. 
 

{11****, **11**, ****11}   fitness = 2 

{1111**, 11**11, **1111}   fitness = 4 

{111111}                               fitness = 8 

(10) 

 
Horn et al. designed a fitness function called LongPath.  

This function is crafted by choosing a desired path length 

k <  2
l
.  Next a path from a starting bit-string to an ending 

bit-string is constructed such that it takes k one-bit 

mutations to ‘follow’ the path.  Each point on the path is 

one ‘hamming distance’ away from each neighbouring 

point.  Equation 11 shows a simple example for a 6-bit 

genome.  This paper uses a 9-bit path detailed in Rudolph 

[16].  The reader is encouraged to examine the code [15] 

for more details. 

 
12-path is {000000, 000001, 000011, 000010, 000110, 

000100, 001100, 001000, 011000, 010000, 110000, 

100000} 
( 1)/ 2

( 1)/ 2

1

3*2 2 ( ) if   is on the path
   ( )

3*2 2 || || otherwise

l

l

Pos x x
f x

x

−

−

 − −
=  

− + 
 

Where Pos(x) is the number of the step in the path the 

genome is on.  000110 is the 4th step in a zero based 

count for the path above. 

(11) 

 

5. Algorithms and Experiments 
 

Thierens [7] applied his two dynamic adaptive schemes as 

well as fixed rate and one deterministic scheme to the 

ONEMAX (or Counting Ones) problem.  He used the 

well-known (1+1) EA strategy [6] for the fixed mutation 

rate and deterministic schemes and the (1+3) EA for his 

adaptive schemes.  Different variants made the 

comparison more difficult.  Algorithm 1 gives the (1+3) 

EA.   

 

Algorithm 1: The (1+3) EA
1
 

1. Choose p(n)  � (0,1/2] 

2. Choose x � {0,1}
d 
uniformly at random. 

3. Create three children {a,b,c} by flipping each bit of x 

independently with p(n). 

4. Select x := max(x, a, b, c ) 

5. Update p(n) according to some scheme Optional 

6. Continue at line 3 

 

Algorithm 1 will be applied to the five unitation functions  

given above with each of the seven mutation rate 

schedules/schemes also given above.  One each of the 

Royal Road and LongPath functions are also used for the 

seven schedules. This totals 49 experiments.  Each 

experiment will have 25 trials run.   Note that 20-bit 

versions of the unitation functions are used.  The basic 

shape of each unitation fitness function is the same as 

presented before. 

 

For Rechenberg’s rule, λ=1.1 is used.  Constant Gain 

settings are λ=1.1 and ω=1.5.  The Declining Adaptive 

method used λ=2.0, ω=2.0 and γ=0.95.  For the Shi fuzzy 

rule set, the fuzzy assignments of mutation rate are: 

high=4/d, med=2/d, low=1/d.  

 

6.  Experimental Results 

 
Table 1 shows the results for the ONEMAX function.  For 

each adaptive method there is an average and standard 

deviation for the number of fitness function evaluations 

                                                 
1
 The (1+1) EA produces only 1 child in step 3.  Step 4 

chooses the maximum fitness of the parent and child. 
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performed.  The ‘Failed Runs’ column gives a count of 

the number of GA runs that failed to find the optimal 

solution in 1000 generations. 

 

 All performed comparatively with the exception of Bäck-

Schütz, the clear loser.  Rechenberg had the best 

performance with a low average and a tight standard 

deviation.  The rest of the methods are generally grouped 

together within the standard deviation of one another, 

meaning that they are statistically equivalent methods. 

 

The NEEDLE and DECTRAP results are in Table 2.  No 

run of the GA resulted in any scheme finding the optimal 

points of either fitness landscape.   The NEEDLE function 

is hard and likely needs a very high number of mutations 

to get enough coverage of the 2
l
 fitness landscape to find 

the ‘needle’.  All of the algorithms were able to ascend to 

the local maxima of DECTRAP with performance similar 

to the ONEMAX results.  This should also be not 

surprising since the DECTRAP function’s landscape is a 

near clone of ONEMAX. 

 
Mutation 

scheme 

Avg 

num of 

fitness 

evals 

Std dev 

num of 

fitness evals 

Failed runs 

Static rate 

Droste 

Bäck-.Schütz 

298 

181 

815 

159 

87 

275 

11 

- 

1 

Constant Gain 

Declining 

Rechenberg 

259 

142 

99 

223 

81 

22 

- 

- 

- 

Shi 158 83 -  
Table 1. ONEMAX results 

 

 
Mutation 

scheme 

Failed runs 

Static rate 

Droste 

Bäck-Schütz 

25 

25 

25 

Constant Gain 

Declining 

Rechenberg 

25 

25 

25 

Shi 25  
Table 2. NEEDLE and DECTRAP results 

 
The DEC2TRAP results are given in Table 3.  Again the 

various methods had much difficulty, only the Droste and 

Bäck-Schütz schemes were successful at frequently 

finding the global optima, and finding it quickly.  The 

other methods were total failures.  This result is surprising 

since the DEC2TRAP function does contain a reasonably 

sized fitness basin centered around the optimal point.  It’s 

likely that these methods would be more successful on 50 

and 100 bit versions of DEC2TRAP.  The optimal fitness 

basins in those cases would be quite large. 

 

 
Mutation 

scheme 

Avg 

num of 

fitness 

evals 

Std dev 

num of 

fitness evals 

Failed runs 

Static rate 

Droste 

Bäck-.Schütz 

- 

33 

42 

- 

37 

34 

25 

6 

- 

Constant Gain 

Declining 

Rechenberg 

- 

NS 

- 

- 

NS 

- 

25 

21 

25 

Shi - - 25  
Table 3. DEC2TRAP results 

 
In comparison to DEC2TRAP there is a performance 

reversal with 2TRAP.  See Table 4 for details.  The 

successful dynamic schemes that worked quickly on 

DEC2TRAP were total failures on 2TRAP.  The reversal 

continues to an extent with the adaptive methods.  These 

methods found the optimal points at least 10 times each 

and required a relatively few number of fitness 

evaluations.  The fuzzy method did escape total failure on 

DEC2TRAP by finding the optimal in 5 of the 25 runs. 

 

 
Mutation 

scheme 

Avg 

num of 

fitness 

evals 

Std dev 

num of 

fitness evals 

Failed runs 

Static rate 

Droste 

Bäck-Schütz 

210 

- 

- 

65 

- 

- 

22 

25 

25 

Constant Gain 

Declining 

Rechenberg 

56 

73 

41 

26 

59 

20 

14 

10 

15 

Shi 56 9 20  
Table 4. 2TRAP results 

 

Table 5 shows the results for the 128-bit Royal Road 

function.  Algorithm 1 was run for a maximum of 20,000 

generations.  All of the adaptive methods except 

Rechenberg performed well on this function with the 

Bäck-Schütz scheme the clear winner, as it has the lowest 

average and the tightest standard deviation.  The failure of 

Rechenberg is so far unexplained; λ=1.1 and λ=2.0 were 

tried with the same failure result. 

 

 
Mutation 

scheme 

Avg 

num of 

fitness 

evals 

Std dev 

num of 

fitness evals 

Failed runs 

Static rate 

Droste 

Bäck-Schütz 

- 

28,312 

18,615 

- 

12,413 

5,251 

25 

6 

- 

Constant Gain 

Declining 

Rechenberg 

25,678 

27,548 

- 

12,865 

10,036 

- 

1 

- 

25 

Shi 20,340 9,232 -  
Table 5. Royal Road results 
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Table 6 gives the results for the LongPath function. All 

adaptive schemes fared well on this fairly easy function.  

The Thierens’ Declining rule won out with the lowest 

average and tight standard deviation. 

 

 
Mutation 

scheme 

Avg 

num of 

fitness 

evals 

Std dev 

num of 

fitness evals 

Failed runs 

Static rate 

Droste 

Bäck-Schütz 

471 

157 

232 

56 

104 

165 

- 

- 

- 

Constant Gain 

Declining 

Rechenberg 

235 

129 

225 

133 

83 

134 

- 

- 

- 

Shi 158 103 -  
Table 6. LongPath results 

 
In both the Royal Road and LongPath functions, the static 

mutation rate was well outperformed by the adaptive 

schemes. 

 

7.  Conclusion 
 

There are many methods known in the literature for 

adapting GA parameters.  It is also common to see these 

methods perform well in those papers.  However, when a 

systematic experiment with a variety of methods is 

applied to a set of fitness functions displaying basic 

characteristics, the methods show very mixed results. 

 

It is worth noting that combinations of the fitness 

functions above can be used to construct a wide variety of 

complex landscapes.  The results above can be used as a 

guide to how a particular adaptive scheme might perform 

in a certain situation.  For instance, if a more complex 

fitness landscape contains ‘hills’ followed by a flat 

‘plateau’, an adaptive GA is likely to climb the hill well 

then get stuck in the plateau.   

 

Of course, this problem exists in non parameter-adaptive 

GAs.  However, simply adding adaptive schemes and 

heuristics does not necessarily cure the GA of the types of 

problems commonly seen in the analysis of a typical run 

of the GA.  The No Free Lunch theorem of Wolpert and 

MacReady [17] is a general proof for GAs that one can 

not claim that a GA with a fancy operators is provably 

better than any other GA.  Reeves and Rowe [18] detail 

the No Free Lunch theorem as well as the debate 

concerning the Building Block Hypothesis. 
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