Application and Testing of a Cougaar Agent-Based Architecture

Mike Emery, John Paxton, Rick Donovan
Montana State University, Montana Tech
I. Problem Description

II. Cougaar
 A) General Overview
 B) System-specific Overview

III. Testing (paper)

IV. Additional Testing

V. Future Directions

VI. Questions
I. Problem Description

- RAVE Technologies, TSA
- Airport door/area secure access
- Autonomous decision making at the door
II. Cougaar

- Cognitive Agent Architecture
 - Created by BBN Technologies under DARPA sponsorship
 - Open source Java-based architecture
 - Designed for large-scale, logistics applications
 - Motivated by known equipment losses during Gulf War I
II. A. Cougaar: General Overview

- Cougaar Node:
 - Agent
 - Blackboard
 - Message Queue
 - Plug-ins
II. B. Cougaar: System-specific Overview

- **Plug-ins:**
 - Sensor
 - Comparator
 - Authenticator
II. B. Cougaar: Community Design
III. Testing (paper): Simulation

- Interactive Simulation
 - Proof of Concept
 - Preliminary Testing
III. Testing (paper): File-based

- Fast, repeatable, and controlled
- Agent layouts:

Separate

Intersecting

Overlapping
III. Testing (paper):

Results

- Separate: 100%
- Intersecting: 88-96%
- Overlapping: 88-96%

Analysis of Error
- Not always the same test case
- During high CPU load
- Increasing delay time improves result
IV. Additional Testing

- Intersection cases only
- Randomly generated 100 events
- Increasing delay times 0-3000 ms
- 2-4 Nodes
- 1 machine simulation
- 5 machine simulation
IV. Additional Testing: Results on 1 machine

![Graph showing% Accuracy vs Time Delay (ms) for single machine simulation with 2, 3, and 4 sensors.]}
IV. Additional Testing: Results on 5 machines

Multiple Machine Simulation

% Accuracy

Time Delay (ms)

2 Sensors
3 Sensors
4 Sensors
V. Future Directions

- Analysis of decreasing performance past a certain threshold
- Further study into Cougaar
- Hardware integration
Questions?