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Abstract. Using a dynamic systems model for the Simple Genetic Algorithm 
due to Vose, we analyze the fixed point behavior of the model without crossover 
applied to functions of unitation.  Unitation functions are simplified fitness 
functions that reduce the search space into a smaller number of equivalence 
classes.  This reduction allows easier computation of fixed points.  The effect of 
model fixed points that are outside of the population space, but near enough to 
influence behavior of the Simple GA will be examined.   This analysis will be 
applied to several fitness functions of unitation. 

1   Introduction 

The Vose infinite population model [1] of simple genetic algorithms is a dynamic 
systems model that represents populations as a vector of proportions.  This vector has 
dimension s, where s is the size of the search space.  Each entry in the vector is the 
proportion of members in the global population that are represented by a given chro-
mosome in the search space.  This representation allows utilization of techniques and 
theorems from the mathematical theory of dynamic systems to analyze the GA.   

This paper is restricted to examining a class of fitness functions called ’functions of 
unitation’.   These functions establish equivalence classes, allowing a reduction in the 
dimensionality of the corresponding Vose model.  The analysis will also be restricted 
to mutation-selection GAs with no crossover, elitism or other advanced techniques. 

Using the eigensystem of the mutation-only Vose model, fixed points of the muta-
tion-selection GA can be found.  Fixed points are population vectors such that apply-
ing the GA to them results in the same population vector.  Fixed points are not the 
optimal points in the fitness landscape, they represent the expected long-run distribu-
tion of a population for a given GA with a large enough population.  A fixed point 
may or may not contain a significant proportion of the global optima of the fitness 
landscape. 
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Fixed points will be calculated over a range of mutation rates for several fitness 
functions.  Metastable states defined by the model will also be calculated.  These 
states are fixed points of the model that exist outside the representable space of a real 
population.  The metastable states near the population space can create metastable 
regions inside the space and have an effect on the GA under real populations [3]. 

This paper is largely an extension of Rowe [5] that further explores the effect of 
mutation rates on fixed points and metastable states.  The intent of this exploration is 
to lay the groundwork for studying how adaptive mutation schemes can be understood 
and designed. 

2   The Vose Dynamic Systems Model 

The Vose infinite population model is largely the work of Michael Vose[1].  The in-
tent of the model is to allow a mathematical analysis of the Simple Genetic Algorithm.  
For our purposes, we define the Simple Genetic Algorithm as a GA with proportionate 
selection, bitwise mutation and several standard crossover operators. 

2.1   Background  

The Vose model is a discrete dynamical system and is a kind of ’map’.  Maps are dis-
crete dynamic systems that translate an input to an output.  An example is the well-
known Logistic Map [2].  

f(x) =λx(1-x)   {where λ ∈ ℜ ;  λ > 0 ; x ∈ ℜ } (1) 

The Vose model translates the current population vector to the next population vec-
tor.  Iterating the map simulates the trajectory of the GA (in the limit of infinite popu-
lation size), where the current population vector becomes the input to the map, giving 
the next generation of the GA.  This forms a sequence of population vectors p1, p2 , p3 

,..., pk . This sequence is the trajectory of the GA model through the population space. 
The Vose model is a deterministic dynamical system.  For a sufficiently large popu-

lation in a real GA, this model allows us to make fairly accurate predictions of the 
expected next population and the long term behavior of the population [3].  If the 
population is small, then the actual populations produced by the GA will have wide 
variability compared to the predicted population.   

If the population is very large, then the actual populations produced by the GA 
should be close to the predicted model for some number of generations [1].  Thus the 
Vose model is called an infinite population model. 

2.2   Theory 

The following section summarizes Rowe [3] as it applies to selection-mutation models 
of GAs. Given a binary genome of length d, the search space of the GA is of size s=2d.  
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To use the Vose model we represent the population as a vector of proportions of 
length s, p = (p0 ,..., ps-1).  Each pi

 

is the proportion of membership in the population by 
the binary string i. 

For a 2-bit genome, a possible population vector is p = (0.1, 0.2, 0.5, 0.2).   This 
could represent a population of 10 individuals, 1 copy of 00, 2 copies of 01, 5 copies 
of 10, and 2 copies of 11. 

Note that the population vectors have the simplex property.  Each component of 
the vector is in the range [0,1], and the sum of the components equals 1.  
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Next the properties of the model for mutation-selection GAs are given.  The mu-
tation-selection infinite population model is created as follows.  Operator G is defined 
by: 
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where µ(pt) is the average fitness of the population pt .  The s x s mutation matrix U is 
composed of the probabilities that a chromosome string j will mutate into string i.  
Note that U is symmetric.  The s x s selection matrix S is a diagonal matrix consisting 
of fitness values along the diagonal.  Dividing by µ(pt) implements proportionate se-
lection. 
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From the theory we know these five properties of the US matrix [3].   
 

1. US is a positive matrix: all entries are non-negative. 
2.  Fixed-points of the model are the normalized (so that all elements sum to 1) ei-

genvectors of US. 
3.  Only one normalized eigenvector is in the simplex (via Perron-Frobenius theo-

rem [3][8]). 
4.  Eigenvalues of US are the average fitness of the population given by the corre-

sponding eigenvector. 
5.  The largest eigenvalue corresponds with the lone eigenvector inside the sim-

plex. 
 
These properties allow the computation of the fixed points of the infinite popula-

tion model for a given fitness function and mutation rate.  By normalized vector we 
mean that all elements have been scaled such that they all sum to 1, creating a vector 
that obeys the simplex property.  The lone normalized fixed point in the simplex is the 
global attractor of the dynamical system modeling the GA.   
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There can exist fixed points outside, but very near, the simplex.  Such vectors do 
not obey the simplex property (they contain at least one negative number) and cannot 
represent a real population.  Called ’metastable states’ [3], they can exert an influence 
on the GA for real populations near these fixed points.  They can form ’metastable 
regions’ inside the simplex [3].  These regions are similar to the saddle points of ele-
mentary dynamical systems.  Populations can escape from these regions, quick escape 
is likely only if the population size is small or the influence of the metastable state is 
weak (e.g. the metastable state is relatively far away from the simplex). 

Note that fixed size populations form a subset of the simplex called a lattice [4]. 
Some simplex population vectors (an example is any vector with an element like 2/3) 
are not representable with finite populations.  The finite population GA moves from 
lattice point to lattice point in the simplex.  The smaller the population size, the 
sparser the lattice points in the simplex.  

3   Functions of Unitation 

Unitation functions are fitness functions where fitness is defined only by the number 
of ones in a chromosome x:{1,0}

d
.  All fitness values are non-negative:  

u(x):{0,1}
d
  →  ℜ+   (5) 

An example function is 
 u(0) = 3  u(1) = 2  u(2) = 1   u(3) = 4 
This definition allows us to reduce the dimensionality of the infinite proportionality 

population vector from 2d x 1 to (d+1) x 1.  This vector is represented as p = {p0 ,..., 
pd}, where pk is the proportion of the population having exactly k ones.   Note that this 
vector is of d+1 dimension as it must have entries for the all zeros case, the all ones 
case and all cases in between. 

Using the above fitness function, a selection matrix S is defined as the (d+1) x 
(d+1) diagonal matrix Sk,k = u(k).  The mutation matrix U is defined as an (d+1) x 
(d+1) matrix with each entry computed using the following equation [4][5].  
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δx,y is the Kronecker delta function and q is the mutation probability.  This is the 
probability a given bit in the chromosome string mutates to its complement state. 
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3.1   Example Functions of Unitation 

The three fitness functions pictured in Figure 1 are called NEEDLE, BINEEDLE and 
ONEMAX, and have been studied before by Rowe [5] and Wright [6].  Here d=20, 
α=20 and α=5 are used for NEEDLE and BINEEDLE. 
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Figure 1.  NEEDLE, BINEEDLE and ONEMAX fitness functions. 

4   Fixed Points as a Function of Mutation Rate 

Figure 2 shows two fixed points for the ONEMAX fitness function.  These are the 
normalized leading eigenvector of G with mutation rate q=0.01 and q=0.05 both with 
d=20, providing 21 unitation classes.  They show, for example, that for q=0.01 ap-
proximately 25% of the population should contain strings with 17 bits of value 1 after 
a sufficiently large number of generations of the mutation-selection GA have been 
computed and a very large population. 

Figure 2.  ONEMAX fixed point distributions for q=0.01 and q=0.05. 
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Next, a sequence of fixed points were computed for mutation rates starting at 
q=0.01, and the population distributions were plotted as a 3-dimensional surface.  
Figure 3 shows the ONEMAX fixed points plotted from q=0.01 to q=0.20.  Note that 
at mutation rates near 0.01, the population contains a significant proportion of the 
f(20)=20 optimal mutation class.  By q=0.05, there is near zero membership. 

 

Figure 3.  ONEMAX fixed point surface. 

4.1   Fixed-point Surfaces for the NEEDLE and BINEEDLE Functions 

Figures 4 and 5 contain the fixed point surfaces of NEEDLE and BINEEDLE for both 
α=5 and α=20.  Figure 4 tells us that for low mutation rates, i.e. mutation rates below 
q=0.025 and q=0.05 respectively, NEEDLE has a significant proportion of the popula-
tion at the maximum.  

Figure 4.  NEEDLE fixed point surfaces with α=5 and α=20. 
In Figure 5 note the dramatic change in population distribution for BINEEDLE that 

occurs near q=0.07 (for α=5).  Above this mutation rate the population contains near 
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zero proportional membership by either global optimum. This tells us that mutation 
rates below this value are likely very important for good GA performance.  For α=20 
this phase change occurs near q=0.13, indicating that this version of the fitness func-
tion is more tolerant of higher mutation rates.   NEEDLE has similar properties. 
 Notice that for mutation rates greater than the critical q values for both functions, 
the population is centered around the unitation midpoint, a string of 10 ones and 10 
zeros.  

Figure 5.  BINEEDLE fixed point surfaces with α=5 and α.=20. 

The phase transitions for NEEDLE and BINEEDLE were studied in [6] and [9], 
and are shown by the Eigen model [10].  Ochoa and Harvey [9] restate the Eigen 
model for the GA community and show how the Eigen ‘error thresholds’ change under 
finite populations.  Finite populations move the phase transition to lower mutation 
rates. 

4.2   Fixed-point Surface for a Fully Deceptive Trap Function 

Trap functions are piecewise linear functions that divide the search space into two 
Hamming space basins [7].  Each basin has an optimal point, one of which is the 
global optimum.  In Deb and Goldberg [7], they set forth a set of conditions for calling 
a fitness function 'fully deceptive'.  We have adopted a fully deceptive function from 
[7], and refer to it as DECTRAP.  
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Figure 6 illustrates DECTRAP and its fixed-point surface.  The trap function is very 
near a fitness of 1 for the all zeros string, and is fitness 1 for the all ones string.  The 
all zeros basin takes up the majority of the function space. 

The fixed-point surface has a drastic phase change at approximately q=0.012. Be-
low this mutation rate a high proportion of the globally optimal string exists.  Above 
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this mutation rate the fixed point contains nearly zero proportion of the global optimal.  
Notice again that as the mutation rate increases, the fixed point moves toward a popu-
lation centered around the unitation midpoint. 

Figure 6.  Fully deceptive trap functions DECTRAP and fixed point surface. 

4.3   Fixed-point Surface for Functions with Two Traps 

Figure 7 illustrates a trap function containing two traps, referred to as 2TRAP.  The 
fixed point surface is very similar to the BINEEDLE surface with a critical phase 
change at q=0.04.  Note that mutation rates below 0.02 are slightly superior since the 
fixed points are still centered much closer to the two local optima.  As the mutation 
rate increases from 0.02 to 0.04, the population clusters move away from the maxi-
mums.  The mutation rates are too high to maintain high membership. 

 
Figure 7.  Double trap function 2TRAP and fixed point surface. 

Figure 8 shows a deceptive double trap function, or DEC2TRAP.  This function is 
modeled after the fully deceptive function given in [7].   The formula is given here:  
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Figure 8.  Deceptive double trap function DEC2TRAP and fixed point surface. 

DEC2TRAP’s fixed point landscape is very interesting in that it has virtually no 
membership of the u(x)=0 and u(x)=20 high fitness points.  This is result is counter-
intuitive.  The regions on either side of the center optimal needle have smooth hills to 
climb that lead to the local maximums.  A practioner might expect empirical GAs to 
retain membership in the local optimas, given that low mutation rates make it harder 
for a population to move outside the basin of either local maxima.  Lack of elitism and 
other advanced features in the model partially explains the result, as well as the fact 
that after a high enough number of generations has passed, the Simple GA will con-
verge totally into the basins of global maximums.  Another reason is that there exist 
many strings in the u(x)=10 class, and only one string in the u(x)=0 and u(x)=20 
classes. 

5   Metastable States 

Fixed points have a region around them generally called a 'basin of attraction' [2].   
Loosely speaking, these are regions where the fixed point exerts influence.  The Per-
ron-Frobenius theorem [8] shows that the US matrix has only one fixed point inside 
the simplex.  The other eigenvectors are called metastable states [3]. 

Rowe [3] defines 'metastable regions' as regions inside the simplex near metastable 
states close to the simplex.  The continuity of Vose infinite population model implies 
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these regions exist [3].  The question of how these states move around the neighbor-
hood of the simplex as the mutation rate changes is explored next. 

For the functions previously described, the sum the negative components of the ei-
genvalues is computed.  The lowest sum is potentially the closest metastable state to 
the simplex.  Obviously this is not always the case, a true geometric distance will 
define exactly which of these vectors is closest to the simplex.   

Computing a geometric distance involves finding the minimum distance from a 
point to an n-1 dimensional hypertetrahedron.  For now, the first metric is used. 

Figure 9 plots this distance metric for the α=5 NEEDLE and BINEEDLE on a 
logarithmic scale.  Also shown is the population proportion of the u(x)=10 string vs. 
mutation rate for comparison.  Both functions have a similar metastable state move-
ment and visually identical population proportion graphs.  Note that the phase changes 
in all four graphs take place at approximately q=0.075 where the closest metastable 
state moves suddenly farther away.  Figure 10 shows the identical graphs for α=20.  
They show essentially the same effect as α=5 except the phase changes take place at 
q=0.13.   

 
Figure 9.  Metastable point distances and u(x)=10 proportions for α=5 NEEDLE 

and BINEEDLE. 
 
Figure 11 shows the same plots for the three trap functions ONEMAX.  The plots 

for DECTRAP and DEC2TRAP show similar metastable state movement, with 
DEC2TRAP’s nearest metastable state approximately twice as far away as DECTRAP 
for a given q.  2TRAP’s metastable plot contains some interesting sharp edges that 
persisted for various settings from 30 to 40+ digits of precision. 
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Figure 10.  Metastable state distances and u(x)=10 proportions for α=20 NEEDLE and 
BINEEDLE. 

 
Figure 12.  Metastable point distances and u(x)=10 proportions for the trap functions and 
ONEMAX 
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6   Conclusions and Future Work 

It is common to read in GA research papers that a specific mutation rate is used 
with no justification for a particular value.  Hopefully this paper will prompt the read-
ers to question the validity of their choice of mutation rate in the next GA project they 
undertake. 

We have shown numerical results analyzing fixed-points and metastable state prox-
imity for eight different fitness functions applied to functions of unitation.  We chose 
to look at unitation functions since they provide a level of dimensional reduction to 
ease the tractability of theoretical analysis while still being interesting functions. 

In the future we will investigate how the lessons learned here can influence the 
choice of adaptive mutation rate schemes and valid mutation rate ranges.  We will also 
implement a geometric distance algorithm for finding the closest metastable states and 
apply this to other fitness functions. 

We believe this type of analysis will help aid the understanding of simple mutation-
only evolutionary algorithms like the (1+1) EA and related algorithms, as well as 
dynamic parameter schemes for these algorithms. 
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