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Abstract: Radar ornithology using data from the NEXRAD weather radar system has 
given scientists new tools for studying bird migration in the United States.  Unfortunately, 
the process of identifying echoes from birds in radar data still largely requires that trained 
technicians spend hours manually scouring radar scans.  This paper provides some 
background for understanding biological echoes in NEXRAD data and then describes our 
initial investigations of the use of machine learning techniques to help automate the process 
of echo classification.  Doppler data allows researchers to look at bird migration by 
examining large clusters of birds that could be observed approaching and descending at 
stopover points where they would rest until they began the next leg of their journey.  One 
of the NEXRAD system’s greatest strengths has also been a significant obstacle for 
researchers studying bird migration: with 154 radar stations across the United States, each 
often producing hundreds of volume scans per day, the amount of data to sort through is 
staggering.  The real problem is that classifying birds in radar scans currently requires a 
skilled technician who has been trained in visually identifying the tell-tale signs that 
distinguish biological echoes from non-biological echoes.  Consequently, the task of 
plotting a specific migration over any significant amount of space and time quickly 
becomes a difficult and resource intensive problem.  We have begun by using a K-nearest 
neighbour classifier, a naïve Bayes classifier, and a neural network to classify the echoes.  
Early validation results using tenfold cross-validation procedures are hopeful and indicate 
that machine learning techniques could be well suited for this task.  Accuracy rates have 
exceeded 98 percent.  Although these early results are encouraging, it is important to keep 
in mind that each of the training sweeps used in these experiments was selected by an 
expert because it could be considered a prototypical example of one particular echo type 
dominating a sweep.  Intuitively, these sweeps are the easiest to classify, which may 
explain the results.  The real test will be to apply these methods to more complex data, 
including ambiguous data as well as mixed sweeps containing both types of echoes.  Our 
next efforts will concentrate on acquiring and experimenting with such data.  Our eventual 
goal is to use machine learning methods to map bird migration pathways. 

Keywords: Machine learning, Artificial intelligence, Radar ornithology, NEXRAD, Bird 
migration 

 
1. Introduction 
In the 1940s, researchers discovered that radar could detect the position and movements of 
birds and other flying creatures such as insects [Gauthreaux and Belser, 2003].  With this 
discovery, the field of radar ornithology was born.  Researchers used this technique to the 
best of their ability with whatever data was available to them.  The real breakthrough came 
in the 1990s when the United States began replacing its WSR57 weather surveillance radars 
with WSR-88D Weather Surveillance Radar 1988 Doppler [Diehl and Larkin, 2002].  The 
WSR-88D or NEXRAD NExt Generation RADar system provided freely available radar 
data to researchers that covered a broad geospatial range. 
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By far, one of the most important aspects of the new system was the addition of a Doppler 
component to supplement the reflectivity data.  Doppler data allowed researchers to 
examine large clusters of migrating birds approaching and descending at stopover points 
where they would rest until they began the next leg of their journey. 

One of the NEXRAD system’s greatest strengths has also been a significant obstacle for 
researchers studying bird migration; with 154 radar stations, each producing hundreds of 
volume scans per day, the amount of data to process is staggering.  The real problem is that 
classifying birds in radar scans currently requires a skilled technician who has been trained 
in identifying the tell-tale signs that distinguish biological echoes from non-biological 
echoes.  Consequently, the task of plotting a specific migration over any significant amount 
of space and time quickly becomes a difficult and resource intensive problem. 

This paper describes an approach to this problem that leverages the power of machine 
learning techniques to automate the process of echo classification and provide a means by 
which researchers can automatically detect scans of interest.  We provide a brief technical 
background for the problem, describe several of the classifiers investigated, and conclude 
with some early empirical results and directions for the future. 

 

2. Biological Pattern Recognition 
2.1 Data Format 

At its most abstract level, NEXRAD data is hierarchically organized into four basic 
structures: volumes, sweeps, rays, and pulse volumes [Diehl and Larkin, 2002; Klazura and 
Ima, 1993].  The volume is the highest level structure, representing a snapshot in time of 
the entire three dimensional space around the radar station.  Volumes are composed of 
sweeps.  Sweeps are essentially two dimensional structures containing echoes at the same 
elevation angle.  Sweeps are further subdivided into rays.  Like the spokes on a tire, rays 
extend outward from the radar station and contain all of the pulse volumes that share the 
same azimuth.  This leads to the lowest level of the NEXRAD hierarchy, the pulse volume.  
A pulse volume is essentially a rectangular volume of space (technically, it is conical in 
shape) for which the radar produces reflectivity, velocity, and spectrum width values.  
Figure 1 illustrates the three dimensional organization of these components. 

 

2.2 Data Preprocessing 

Before training and classification can take place, six preprocessing steps are performed on 
the data.  Some of these steps are 
obvious; others not so. 

 
Figure 1.  WSR-88D Hierarchical Data Structure 

Our first step is to select the 
sweep or sweeps that we want to 
use.  When studying bird 
migration, this means using the 
lowest (.5 degree) elevation 
sweep.  This is the elevation at 
which most birds will appear. 

Our second step is to remove 
untrustworthy data.  This includes 
both pulse volumes that are very 
near and pulse volumes that are 
very far from the radar station.  
Due to the curvature of the earth 
and the elevation of the 
instrument, the radar beam nearest 
to the ground in the vicinity 
closest to the radar station.  As a 
result, the echoes nearest the radar 
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station are also the echoes most likely to be the result of ground clutter.  To avoid this 
problem, we discard the first 20 km of data.  At the other extreme is data that is very far 
from the radar.  While reflectivity data can be trusted at distant ranges, velocity data past a 
certain range cannot be.  This is due to what has been coined the Doppler Dilemma or the 
Range-Velocity Ambiguity [Doviak and Zrnic, 2006].  The Doppler Dilemma states that 
there is a connection between maximum range and maximum velocity: extending one 
decreases the other.  The balance between range and velocity is determined by the pulse 
repetition frequency of the radar.  To avoid using ambiguous velocity data, we discard 
pulse volumes farther than 145 km (the unambiguous velocity range) from the radar. 

Third, after removing untrustworthy data in the second step, pulse volumes with bad or 
range-folded reflectivity data are removed.  Bad values typically indicate empty space 
resulting from returned echo strength being less than the signal to noise ratio for the radar. 

Fourth, bad or range-folded velocity or spectrum width values are set to zero.  Unlike bad 
valued reflectivity data, these values do not typically represent empty space.  Therefore, 
these values are simply zeroed rather than removed so that the algorithm can exploit the 
uncorrupted reflectivity information. 

Fifth, a set of second order features are calculated for each of the three base values.  These 
second order features include variance, kurtosis (a measure of peakedness), and skewness 
(a measure of asymmetry) [Joanes and Gill, 1998]. 

Sixth, insignificant or deleterious features are removed from the data.  Features, in this 
context, include the three base values, azimuth, range, and any second order features 
calculated in the previous step.  A feature is classified as insignificant or deleterious 
depending on the classifier.  In the same way, the rationale for removing a feature varies 
with the classifier.  For classifiers that give more weight to features that have a higher 
correlation with the classification, removing unimportant features can improve the system’s 
execution time.  For a classifier that weights all features equally, removing excess features 
can have a significant effect on classification accuracy. 

 

2.3 General Methodology 

Our classification system starts with supervised training data that is comprised of a number 
of sweeps that have been selected by an expert and each sweep has been classified as either 
dominated by biological or non-biological echoes.  These sweeps are broken into individual 
pulse volumes and each pulse volume is assigned the classification of its containing sweep. 

For validation, the training data is separated into folds, where a fold consists of data from 
several sweeps.  Due to practical computer processing (hardware) limitations, the sweeps 
are not used in their entirety.  Instead, roughly 5% of each sweep is randomly sampled.  
Our system performs ten-fold cross validation using this training data [Kohavi, 1995]. 

 

3. Machine Learning Approaches 
3.1 K Nearest Neighbour Classifier 

The K nearest neighbour classifier [Wu et al, 2008] is an instance based learning approach.  
This type of classifier is known as a “lazy” learner because it delays most of the 
computational workload until the classification phase.  The K nearest neighbour classifier 
treats each training value as a point in n-dimensional space, where n is equal to the number 
of features being used.  In simple systems, training values are stored and no other 
processing is performed during the training phase.  Later, during the classification phase, a 
distance function is used to find the K nearest neighbours to an unknown instance and the 
classes of those neighbours are used to assign a class to the new instance. Figure 2 provides 
an example of a K nearest neighbour classifier trained on two dimensional data.  In this 
example, the unknown instance represented by the gray circle would be classified as non-
biological because two of the three closest training instances are non-biological. 
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Instance based learning classifiers have been successfully applied to a number of problem 
domains, but there are consequences that must be considered when using this type of 
classifier [Aha et al., 1991].  When dealing with radar data, the three characteristics of 
KNN classifiers with the biggest impact are intolerance to noise, intolerance to irrelevant 
features, and computational complexity. Fortunately, a number of advances have been 
made in mitigating these problems. 
 
Intolerance to noisy data can often be assuaged by increasing k. The idea is to increase the 
number of neighbours and thereby decrease the effect of noisy training data. The obvious 
caveat is that increasing k too much can cause the neighbourhood to cross the concept 
boundary resulting in reduced performance [Wu et al., 2008]. 
 
Simple KNN classifiers suffer when irrelevant, or less important, features are included 
because they can have a large impact on the distance given by the distance function.  A 
related problem arises when features with large ranges of values begin to dominate the 
distance function. Both of these issues can be addressed by weighting the features [Wu et 
al., 2008].  Despite the benefits of weighting, lower priority features can still be a problem 
because weighting them correctly requires specific knowledge regarding the relative 
importance of features. 
 
High computational cost is the result of calculating distances to every training instance for 
each new instance during the classification phase.  One improvement that is effective for 
certain applications is to only save training instances that are misclassified [Aha et al., 
1991].  These instances generally define the concept boundary. 
 
For our experiments, we used the IBk classifier provided by the Weka machine learning 

library [Witten and Frank, 2005].  
This KNN implementation was 
used with the classic Euclidean 
distance function.  

 

 
 

Figure 3.  K Nearest Neighbor Classifier Example 
(K = 3) 

 

 
Figure 3.  Artificial Neuron 

 

 

3.2 Naïve Bayes Classifier 

The naïve Bayes classifier 
[Mitchell, 1997] has become 
popular due to its simplicity, 
efficiency, and effectiveness.  It is 
often used as a benchmark when 
experimenting with other, more 
complex classifiers.  This 
classifier is built based on Bayes’ 
theorem, which states that the 
probability of seeing event A, 
given that event B has occurred, 
can be written as follows: 

)(
)(*)|(
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In our classification problem, 
Bayes’ theorem is used to 
determine the probability of a 
pulse volume belonging to the 
biological class given the pulse 
volume’s features.  An unknown 
pulse volume is classified by 
maximizing this probability 
across all the possible classes. 
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In practice, the theoretical Bayes approach needs an enormous amount of training data and 
takes an impractical amount of computation time due to the P(B|A) factor in the previous 
theorem.  For our problem, P(B|A) is the probability of seeing the set of features given a 
specific classification.  Calculating the joint probability for a set of features given a 
classification can be a daunting task due to the number of possible combinations that arise 
when a nontrivial number of features and classes are being considered.  We considered up 
to 14 features and two classes.  Each feature had a wide range of possible values.  The 
combinatorial explosion for this feature set makes calculating the joint probability an 
intractable problem. 

The naïve Bayes classifier avoids this problem by making the profound assumption that 
attributes are independent of each other.  Under this assumption, the following conclusion 
is reached when calculating the joint probability for features A, B, and C given class D:  

)|(*)|(*)|()|,,( DCPDBPDAPDCBAP =     (2) 

This product is computed by simply counting the frequencies of the various attributes for 
each of the candidate classes.  Bayes’ theorem can now be written as follows: 
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Bayes’ theorem can be further reduced by eliminating the denominator.  This is valid 
because we are only interested in maximizing the probability across the possible classes.  
The denominator is a normalization factor and remains constant for each of the various 
possible values (classes) of D.  For a set of features A, B, and C, a classification Y can be 
made by maximizing the probability of the class D given the features. 

)),,|(( CBADPMAXY =     (4) 

After applying the independence assumption, (4) can be rewritten as: 

)(*)|(*)|(*)|(( DPDCPDBPDAPMAXY =     (5) 

The independence assumption is controversial within the scientific community.  Although 
this assumption is invalid in most real world applications, studies have shown that making 
this assumption is largely inconsequential for many problems.  As a result, the naïve Bayes 
classifier has proven to be remarkably efficient and effective [Mitchell, 1997]. 

The classifier implementation used in this investigation was the naïve Bayes classifier 
provided by the Weka 3 machine learning library [Witten and Frank, 2005].  

 

3.3 Neural Network Classifier 

Neural networks are a computational framework loosely based on the biological neurons 
contained in the brain.  Basheer and Hajmeer [2000] provides an excellent overview of the 
fundamentals of neural networks.  These networks are composed of a number of simple 
processing units called neurons.  Neurons typically map a number of inputs to a single 
output.  A typical neuron associates a set of weights with the inputs such that when a 
specific input is presented to the neuron, it multiplies each input by its respective 
weighting.  These weighted inputs are then summed and passed through a threshold 
function to achieve a final output.  Typical output bounds are [-1, 1] and [0, 1].  A common 
threshold function is the sigmoid function [Mitchell, 1997]: 

xe
xS −+
=

1
1)(     (6) 

Figure 3 illustrates a typical artificial neuron.  In this case a weight vector W is used to map 
an input vector X to an output Y. 

The specific mapping, or function, that a neuron executes is determined by its set of 
weights.  Learning algorithms have been developed to learn a mapping by adjusting the 
weights until a set of inputs properly produces a set of outputs.  A single neuron can learn 
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simple functions.  More advanced, often non-linear, functions require a network of neurons 
working together. 

Neural networks typically group neurons into a number of layers, including an input layer, 
output layer, and any number of hidden layers.  An example of a feed-forward neural 
network can be seen in Figure 4.  Feed-forward refers to the unidirectional nature of 
communication between nodes in this network.  A more complex form of neural network is 
the backpropagation network.  This form of network uses the backpropagation learning 
algorithm to propagate weight changes back through the network [Du, 2006].  
Backpropagation networks are one of the most common forms of neural networks used in 
practical applications.  The backpropagation network implemented by the multilayer 
perceptron classifier in Weka [Witten and Frank, 2005] was used for this investigation. 

 

4. Empirical Validation 
Our experiments used ten-fold 
cross validation [Kohavi, 1995] 
to evaluate each of the three 
classifiers.  We used 40 sweeps 
categorized beforehand by radar 
ornithologists,  and each fold 
consisted of data from four 
sweeps.  Due to computational 
limitations, only 5% of each 
sweep was used during training.  
This resulted in each fold 
containing approximately 29,000 
pulse volumes.  The decision to 
use 5% of the data was based 
solely on practical 
considerations.  A formal 
sensitivity analysis examining 
this decision will be conducted in 

the future. 

 

 
 

Figure 4.  Typical Feed-Forward Neural Network 
 

After training a classifier on 36 sweeps from nine folds, each of the remaining four sweeps 
in the tenth fold was categorized by that classifier.  Such classification was done at the 
pulse volume level at this stage.  Every pulse volume in the four unclassified sweeps was 
presented to the classifier as a set of features.  Each of the classifiers in the Weka 
framework produce a classification probability distribution. Although this is natural for 
naïve Bayes, constructing distributions for the neural network and KNN are not as obvious. 
The neural network contains output nodes for each of possible classes and each output node 
produces a numeric score. These scores are then normalized to produce a distribution. In a 
similar fashion, the class frequencies present in the k nearest neighbours are normalized to 
provide a distribution for KNN. For our problem domain, the classifiers produce a 
probability distribution over the two possible classes: non-biological and biological echoes.  
The distribution [.20, .80], for example, would signify that the classifier gives a 20% 
chance of the pulse volume being non-biological and an 80% chance of being biological. 
After this distribution was produced, we assigned each pulse volume a class by majority 
rule. 

Next, an entire sweep was assigned a class.  Unlike pulse volume classification, sweep 
classification was not by majority rule.  One goal of our work is to reduce the number of 
sweeps that researchers must consider in their search for biological echoes.  As such, 
eliminating false positives is more important than eliminating false negatives.  We found 
through a series of experiments that using  a 70% threshold did not significantly effect 
classification accuracy, but did substantially bias the algorithm towards producing false 
negatives rather than the alternative.  Therefore, a sweep was only classified as biological if 
at least 70% of its pulse volumes had been so classified. 
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Subsequently, each of the remaining nine folds was iteratively processed, resulting in all 40 
sweeps being classified once.  It is at this stage that we compared the sweep’s classification 
with that provided by the expert.  This entire process was repeated for each of the three 
classification algorithms using the same 40 sweeps. 

The following table summarizes the experimental results.  The K Nearest Neighbour 
approach and the Naïve Bayes approach classified sweeps with the same level of accuracy.  
When time is taken into account, however, the K Nearest Neighbour classifier required 
nearly 40 times as long to complete. 

 
Table 1.  Cross Validation Classification Results 

Classifier Correctly Classified Sweeps Time to Train and Classify 

K Nearest Neighbour 39 / 40 191 min 

Naïve Bayes 39 / 40 5 min 

Neural Network 40 / 40 17 min 
 

The neural network took three times longer than Naïve Bayes, but made up for the extra 
time by classifying all 40 sweeps correctly.  We used a midrange PC running Ubuntu Linux 
as our test machine.  The test machine contained 1GB of RAM and had a 3.0 GHz Pentium 
4 processor. 

 

5. Conclusions and Future Directions 
All of the classifiers investigated in this paper performed well on the training data, and the 
naïve Bayes and neural network classifiers required a fraction of the time used by the K 
Nearest Neighbour classifier. 

These early results are encouraging, but more research is needed.  It is important to keep in 
mind that each of the training sweeps used in these experiments was selected by an expert 
because it could be considered a prototypical example of one particular echo type 
dominating a sweep.  Intuitively, these sweeps are the easiest to classify, which may 
explain the results.  The real test will be to apply these methods to more complex data.  
This includes ambiguous data, i.e., data that is not clearly of one type of echo, as well as 
mixed sweeps containing definitive examples of both types of echoes. 

We are currently working with domain experts to acquire training data that covers a 
broader range of possibilities.  Testing the system against more complicated data should 
bring to light areas in the system that can be improved. If harder data does reduce 
classification, we will also examine how modifying the basic configuration of some of our 
classifiers affects accuracy. For example, we will study how varying k, or using a different 
distance function affects the accuracy of the k nearest neighbour classifier. 

Our future goal is to develop a system capable of spatially and temporally tracking groups 
of migrating birds.  Such a system could identify migration corridors that are likely to 
contain migrating birds at certain times of the year as well as day.  Applications of this 
system would include consultation to lessen the environmental impact by development of 
such things as wind power generation facilities and power lines.  In the scientific 
community, this system would be a tool for scientists researching migration behaviour, 
allowing them to sift through enormous data sets to study both local bird movements as 
well as regional migration.  Such information can be used by wildlife managers to target 
their efforts in those areas where birds are either prevalent or are not, depending on their 
objectives.  Likewise, such information can inform development of natural resources to 
minimize environmental impacts. 

To meet this goal, the current system will need to be expanded in a number of ways.  
Segmentation and boundary detection for classifying groups of echoes at the sub-sweep 
level will allow us to extract valuable information from sweeps that are not dominated by 
biological echoes.  Another possible improvement would be the inclusion of additional 
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classes or subclasses (i.e., rain, snow, or dust, rather than simply non-biological).  The 
system might also benefit from clustering algorithms that could group similar echo types in 
an unsupervised way.  Our system will also need the ability to consider inter-sweep 
relationships between pulse volumes.  Knowledge of relationships between sweeps (i.e., 
elevation and acquisition time) would allow the system to track targets as they move 
through time and space (even traveling into the range of another radar station).  Finally, the 
weather radar system in the United States is being upgraded to a NEXRADII system which 
will provide an additional four moments of data as well as increase the precision of the 
data, itself. 
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