
The Preference Matrix As A Course Design Tool

John Paxton
Montana State University

Universität Leipzig (Guest Professor)
Computer Science Department

Bozeman, MT 59717 USA
+1-406-994-5979

paxton@cs.montana.edu

ABSTRACT
The preference matrix is a theoretical tool based on principles of
evolutionary psychology. This paper briefly introduces the theory
and then describes how the preference matrix has been applied as
a pedagogical design tool for an artificial intelligence course.
After making a preliminary assessment of this experience, the
paper concludes with several discussion questions.

Keywords
Preference Matrix, Computer Science Pedagogy, Course
Evaluation

1. INTRODUCTION
The contribution of this discussion paper is to introduce the
concept of the preference matrix and its applicability to course
design. The preference matrix is a theoretical construct based on
principles of evolutionary psychology. The preference matrix
provides a lens with which to view course design best practices.

The paper is organized as follows. In section 2, the preference
matrix construct is introduced. In section 3, it is explained how
the preference matrix was used to design a specific course on the
topic of artificial intelligence. Section 3 also describes a first
attempt at evaluating the effectiveness of using the preference
matrix to design a course. Finally, section 4 raises some
discussion questions with respect to using the preference matrix as
a pedagogical tool.

2. PREFERENCE MATRIX
The preference matrix is a construct of Stephen and Rachel
Kaplan [7]. The Kaplans have synthesized a theory of humans as
information processors that is grounded in evolutionary
psychology. In order to survive successfully, an individual must
be able to recognize objects in the environment (there is a grizzly
bear on the edge of the meadow), make predications (the grizzly
bear is coming towards me) and evaluate the consequences (this is
dangerous). This is done through the use of a mental construct
called a cognitive map.

Before introducing the preference matrix, it is important to
examine the concept of familiarity. In Table 1 [7], the column
labeled “low preference” indicates an environment that an
individual does not like very well and the column labeled “high
preference” indicates a preferred environment. In a “low
preference” environment, a low amount of familiarity results in

the individual finding the environment strange while a high
amount of familiarity results in the individual finding the
environment boring. In a “high preference” environment, a low
amount of familiarity results in the individual finding the
environment fascinating, while a high amount of familiarity
results in the individual finding the environment comfortable.

To increase the likelihood that a person will spend time within an
environment, it can be seen from Table 1 that the person’s
familiarity with the environment is less important than whether
the person prefers the environment. In a preferred environment,
low familiarity will catalyze the individual to engage with the
environment. As a side effect of this involvement, learning will
likely take place, leading the individual to function more
effectively. In contrast, high familiarity with a preferred
environment will foster effective functioning, but will not
necessarily catalyze learning to take place.

Table 1. Familiarity matrix

Low Preference High Preference

Low Familiarity Strange Fascinating

High Familiarity Boring Comfortable

Table 2 [7] depicts different types of preferred environments. The
two key dimensions that lead to an environment being preferred
are (1) whether an individual can make sense of the environment
and (2) whether an individual can be involved with the
environment through learning and/or exploration. Making sense
and involvement can both be examined from the standpoint of
time. When an environment makes sense in the present, it is
considered “coherent”. When an environment appears that it will
make sense in the future, it is considered “legible”. When an
environment provides involvement in the present, it is considered
“complex”. And when an environment appears that it will
provide involvement in the future, it is considered “mysterious”.
Note that the CS community is currently exploring the notion of
active learning (for example, [4]). A crucial aspect of active
learning is involvement.

Table 2 is called a preference matrix because the more of these
four traits that are present in a given environment (coherence,
legibility, complexity, mystery); the more highly preferred this
environment will be.

The preference matrix is applicable to any environment, be it
natural (e.g. finding one’s way in a jungle) or human designed
(e.g. a book). The remainder of this section will focus on
implications that the preference matrix provides with respect to
designing a course in an educational environment.

Table 2. Preference matrix

Makes Sense Involvement

Present Coherence Complexity

Future Legibility Mystery

“Understanding and respecting the cognitive requirements of the
intended recipient constitute probably the single most effective
step one can take in improving the process of sharing knowledge”.
(page 195) [7] The preference matrix provides many immediate
useful tips when designing a course:

 To promote making sense, new knowledge should be
connected to existing knowledge. Telling a story, using
an analogy and/or using a concrete example are all
possible techniques for accomplishing this.

 To promote making sense, not more than 5 (plus or
minus 2) major concepts should be introduced in any
one session. Otherwise the short term memory capacity
of the student might be overwhelmed.

 To promote involvement, it is important to develop
materials that the learner cares about. Giving the
learner some control over the learning process (whether
it is through self-paced learning or open-ended
assignments) is one way to make this happen. Games
[2] also have a high involvement factor.

 To promote involvement, it is important to understand
roughly the knowledge the learner brings to the course.
Otherwise the learner might judge the environment to be
low in “mystery” and consequently be unmotivated to
learn.

3. APPLICATION
In this section, one successful pedagogical application of the
preference matrix is described. In section 3.1, a brief introduction
of an artificial intelligence course is given. In section 3.2, the
influence of the preference matrix on this course is provided. In
section 3.3, the course is assessed to determine whether the
preference matrix has yielded positive benefits.

3.1 Course Overview
CS 436, Introduction to Artificial Intelligence, is a 3 credit,
senior-level elective course [10]. The course is offered each fall
semester and I have taught this course on 16 consecutive
offerings, beginning with the fall of 1990.

The first three weeks of the course are spent introducing the
required programming language, Common Lisp. The remaining
12 weeks are spent covering fundamentals of search, knowledge
representation and learning in the context of practical
applications.

3.2 Preference Matrix Influence
I first learned about the preference matrix when I was in graduate
school during the late 1980s. When I began my career at
Montana State University, the preference matrix appeared to be a
good guideline to use for designing the courses that I would teach.

Although in the case of CS 436 (Introduction to Artificial
Intelligence), I have taught the class 16 times and the course has
gone through numerous revisions and updates, the core
underlying philosophy of using the preference matrix as a course
design guide has never changed.

At a very high level, the preference matrix states that a good
learning environment is one where (1) a student will be able to
“make sense” of the material both now and in the future and (2) a
student will be “involved” with the material both now and in the
future.

In each offering of the course, some of the designed features of
the course that help it “make sense” to the students are

 The course objectives are clearly stated at the beginning
of the course.

 A web based syllabus is designed that is simple,
complete and easy to use. The syllabus is maintained
on a daily basis.

 All exam questions are designed to test a student’s
comprehension of the course objectives. It is important
to foster critical thinking on the part of the students [8].

 All programming assignments are designed to help
facilitate a student’s comprehension of the course
objectives.

 Lecture material is presented that builds upon previous
course material and what the typical student should
already know. Relationships to previous material are
made explicit. (For example, it is pointed out that a best
first search can be implemented using a previously
studied data structure: the priority queue.)

 Practical applications of lecture material (such as
showing a video clip of the 2005 Mohave Desert robot
race) are provided regularly.

In the Fall 2005 offering of the course, some of the designed
features of the course that enhanced student “involvement” were

 One programming assignment required students to
implement the k-means learning algorithm and then
apply it to a problem of interest.

 One programming assignment required students to
implement a Sudoku problem solver using appropriate
search techniques and constraint satisfaction. The
programs were evaluated based on how quickly they
could solve undisclosed problems of varying difficulty.

 One programming assignment required students to
implement a cribbage playing program. A class
tournament then allowed the programs to play against
one another. Part of the program’s grade was based on
its performance in the tournament. Part of the
program’s grade was based on the sophistication of its

strategy. The cribbage assignment is a good example of
the concept of “mystery”. On the first day of the
semester, students were told about this assignment. As
the semester progressed, students knew that they must
actively assemble bits and pieces of the conceptual
understanding necessary to succeed on the cribbage
assignment.

 During lecture, all students were called on in a
systematic fashion to answer questions. Students knew
that their answers would not affect their grade. Some
lectures were devoted towards philosophical
discussions. Dynamic interaction of all forms is an
important mechanism for fostering “involvement” [11].

Although the programming assignments change on every offering,
I find that offering open-ended assignments that tap into students’
interests is a very effective way to “involve” students with the
course. For example, during the Fall of 2005, a Sudoku craze was
sweeping campus and many of the students would work a Sudoku
puzzle in the campus newspaper on a daily basis. Students were
excited to have the opportunity to write a computer program to
solve these problems and were surprised at how quickly a well-
written program found a solution. Their intrinsic interest in the
problem caused them to develop far more sophisticated solutions
than what the assignment minimally required.

3.3 Results
In order to conduct an initial assessment regarding the
effectiveness of using the preference matrix as a course design
tool, I have examined four semesters worth of evaluation data
from Fall 2004, Spring 2005, Fall 2005 and Spring 2006. During
these four semesters, 19 senior level courses were offered. Two
of these 19 senior level offerings were CS 436. Other instructors
who do not use the preference matrix as a design guide taught the
other 17 offerings. Table 3 shows the evaluation questions that
students were given during the last week of the semester before
finals week.

Table 3. Evaluation questions

Question Text

Q1 How does this course compare with similar
technical courses?

Q2 What is your level of interest in taking an advanced
course?

Q3 Did you find this course challenging?

Q4 Were the objectives of the course clearly stated?

Q5 Were the objectives of the course met?

Q6 How important were the lectures?

Q7 How important were the assignments/programs?

Q8 How important were the tests/quizzes?

Students could respond with one of five answers: 1, 2, 3, 4 or 5.
A 1 indicated the most positive response, a 3 indicated a neutral
(or

average) response and a 5 indicated the most negative response.

Table 4 shows the results of the evaluation. The first column
shows the question being evaluated. The second column shows
the mean response for all senior level courses, excluding CS 436.
There were 225 responses in this category. The third column
shows the mean response for the two offerings of CS 436 that
occurred during the four semester evaluation period. There were
33 responses in this category. The fourth category shows the
standard deviation for all of the data collected to give the reader a
sense of the dispersion. Finally, the fifth column shows the
percent of improvement that the third column showed over the
second column. To make a mean of 1.0 correspond to a 100%
improvement, the percent improvement was computed as follows.
Let x be the number from column 2, let y be the corresponding
number from column 3 and let z be the percent improvement.
Then z = 1 - ((y – 1.0) / (x – 1.0)).

As can be seen from Table 4, using the preference matrix as a
course design instrument appears to improve the course
significantly. For all eight of the questions, there was at least a
10% improvement and for five of the eight questions, there was
greater than a 50% improvement. It is also interesting to note that
students found CS 436 to be 43% more challenging than other
senior level computer science courses. Thus the high evaluations
are not due to the course being an easy one.

Table 4. Evaluation results

Question Non CS-436
Mean

CS-436
Mean

σ Percent
Improvement

Q1 2.19 1.58 0.96 51%

Q2 2.53 1.67 1.29 56%

Q3 1.92 1.52 0.84 43%

Q4 1.83 1.24 0.95 71%

Q5 1.93 1.33 0.91 65%

Q6 1.79 1.52 0.99 34%

Q7 1.82 1.33 0.91 60%

Q8 2.04 1.94 0.98 10%

The three largest improvements are all related to preference matrix
factors. Question 4 (were the objectives clearly stated? - a 71%
improvement) is a result of helping the students to “make sense”
of the course by telling them exactly and repeatedly what concepts
they are supposed to incorporate into their cognitive maps.
Question 5 (were the objectives met? – a 65% improvement) is a
result of helping the students to “make sense” of the course
concepts by explaining the concepts in such a way that students
can develop a deeper and richer understanding of the concepts.
Question 7 (how important were the assignments/programs – a
60% improvement) is a result of choosing programming
assignments that get the students “involved”. Some of the
assignments are open-ended, allowing a student to explore his or
her interests. Other assignments are games or puzzles (such as
Sudoku), that tap into students’ current interests.

It should be noted that the study reported here is an initial one.
Although the results are encouraging, there are many factors in
addition to the use of the preference matrix as a course design tool
that could be influencing the result. Some of these factors include
differing courses, differing instructors, and differing sets of
students. Isolating these variables is very challenging in practice.
Further thought regarding how to conduct more convincing
studies is needed.

4. DISCUSSION
In this section, four discussion questions are raised. Based on
comments from the reviewers, I plan to spend the second half of
my allotted presentation time facilitating discussion on the
question raised in section 4.2.

4.1 Limitations
The preference matrix is a pedagogical tool grounded in the field
of evolutionary psychology. However, no tool is without its
drawbacks. As computer science teachers interested in pedagogy,
we strive to be researchers as opposed to students or amateurs [9].
This requires that we examine both the strengths and the
weaknesses of any given tool.

Discussion Question: What are the limitations of using the
preference matrix as a pedagogical tool?

4.2 Appropriate Research Methodology
The results in section 3.3 show promise with respect to using the
preference matrix as a pedagogical tool. However, it is very
challenging to isolate and measure individual factors in
educational studies.

Discussion Question: What are appropriate research
methodologies for measuring the impact of the preference matrix
in a convincing manner?

4.3 Visiting Professor Course Assessment
During Winter Semester 2006-2007, I have received a senior
lecturing Fulbright Award [5] to develop and offer two courses at
The University of Leipzig in Leipzig, Germany. At the
department’s request, one course will cover web programming
topics (with an emphasis on PHP and MySQL) and the other
course will cover intermediate level data structures and
algorithms, motivated through ACM programming competition
problems [1].

Although I will design and teach both of these courses according
to fundamental tenets of the preference matrix, I am unsure how
to proceed with a meaningful assessment of these courses.
Challenges that must be overcome include (1) teaching the
courses for the first time, (2) staying at The University of Leipzig
for only one semester and (3) cultural differences.

Discussion Question: How can a course be meaningfully assessed
when it is offered by a visiting professor?

4.4 Alternative Approaches
The preference matrix has served me well as a pedagogical tool.

However, other broad pedagogical approaches also exist such as
Bloom’s taxonomy of educational objectives [3] or even Piaget’s
stages of intellectual development [6].

Discussion Question: How do other pedagogical frameworks
compare to the preference matrix? Are these frameworks
alternative or complimentary approaches?

5. ACKNOWLEDGMENTS
My heartfelt thanks goes to Stephen Kaplan for introducing me to
the preference matrix.

6. REFERENCES
[1] ACM International Collegiate Programming Contest.

http://icpc.baylor.edu/icpc/ - Accessed July 28, 2006.

[2] Bayless, J. and Strout, S. Games as a “Flavor” of CS1. In
Proceedings of the Thirty-Seventh SIGCSE Technical
Symposium on Computer Science Education. (Houston,
Texas, March 1-5, 2006). ACM Press, New York, NY,
2006, 500-504.

[3] Bloom, B. (Editor) Taxonomy of Educational Objectives:
Handbook I: Cognitive Domain. Longmans, Green and
Company. 1956.

[4] Budd, T. An Active Learning Approach to Teaching the
Data Structures Course. In Proceedings of the Thirty-
Seventh SIGCSE Technical Symposium on Computer Science
Education. (Houston, Texas, March 1-5, 2006). ACM
Press, New York, NY, 2006, 143-147.

[5] Fulbright Scholar Program. http://www.cies.org/
Accessed July 28, 2006.

[6] Ginsburg, H. and Opper, S. Piaget’s Theory of Intellectual
Development, 3rd Edition. Prentice Hall, N.J, 1988.

[7] Kaplan, S. and Kaplan, R. Cognition and Environment:
Functioning in an Uncertain World. Ulrich’s, Ann Arbor,
MI, 1983.

[8] Krishna Rao, M. Infusing Critical Thinking Skills into
Content of AI Course. In Proceedings of 10th Annual
SIGCSE Conference on Innovation and Technology in
Computer Science Education. (Monte de Caparica, Portugal,
2005). ACM Press, New York, NY, 2005, 173-177.

[9] Lister, R. Computer Science Teachers as Amateurs, Students
and Researchers. In Proceedings of the 5th Baltic Sea
Conference on Computing Education Research. (Koli,
Finland, 2005). 2005, 3-12.

[10] Paxton, J. CS 436, Fall 2005.
http://www.cs.montana.edu/paxton/classes/fall-2005/436/
Accessed July 27, 2006.

[11] Roberts, E. An Interactive Tutorial System for Java. In
Proceedings of the Thirty-Seventh SIGCSE Technical
Symposium on Computer Science Education. (Houston,
Texas, March 1-5, 2006). ACM Press, New York, NY,
2006, 334-338.

