
Self-Managed Deployment in a Distributed Environment via Utility Functions

Debzani Deb
Montana State University,

Bozeman, MT, USA
debzani@cs.montana.edu

Michael J. Oudshoorn
The University of Texas at

Brownsville, TX, USA
michael.oudshoorn@utb.edu

John Paxton
Montana State University,

Bozeman, MT, USA
paxton@cs.montana.edu

Abstract

This paper proposes algorithms and mechanisms for
achieving self-managed deployment of computationally
intensive scientific and engineering applications in highly
dynamic and large-scale distributed environment. The
primary focus is on the modeling of the application and
underlying architecture into a common abstraction and
on the incorporations of autonomic features to those
abstractions to achieve self-managed deployment. To
represent the underlying heterogeneous infrastructure, a
hierarchical (tree) model of distributed resources has
been adopted that offers self-organization of distributed
nodes in a utility-aware way. To accomplish the self-
adaptive deployment, a utility-function has been
formulated that governs both the initial deployment of an
application and maintains the optimality during execution
despite the dynamism and uncertainty associated with the
application and the networked environment. In our
approach, the deployment decisions are made solely
based on locally available information and without costly
global communication or synchronization. The self-
management is therefore decentralized to provide better
adaptability, scalability and robustness.

1. Introduction

Many scientific fields, such as genomics, astrophysics,
geophysics, computational neuroscience or bioinformatics
require massive computational power and resources and
can benefit from a large-scale integrated infrastructure,
formed by harnessing the spare compute cycles of
distributed computation and communication resources.
Typically these applications composed of a large number
of distributed components and it is important to deploy
them in the underlying network in a way that meets the
computational power and network bandwidth
requirements of those components and their interactions.
However satisfying these requirements in a large-scale,
heterogeneous, and highly dynamic distributed
environment is a significant challenge. As systems and
application grow in scale and complexity, attaining the
desired level of performance in this uncertain

environment using current approaches based on global
knowledge, centralized scheduling and manual
reallocation becomes infeasible. Therefore, self-managed
deployment is paramount in order to lower operation
costs, to allow developers to largely ignore complex
distribution issues, to manage system complexities and to
maximize overall utilization of the system.

This paper proposes algorithms and mechanisms for
achieving self-managed deployment of computationally
intensive scientific and engineering applications in highly
dynamic and unpredictable distributed environment. The
main focus of this paper is to model the application and
the underlying architecture into a common abstraction
and to incorporate autonomic features [1] to those
abstractions to achieve self-managed deployment. To
model the underlying heterogeneous infrastructure, we
developed techniques that allow the distributed resources
to self-organize in a utility-aware way while assuming
minimal knowledge about the system. To accomplish
self-managed deployment of the application components
to the network nodes, we designed a scalable and
adaptive deployment algorithm that is governed by a
utility function [2]. The utility function, which returns the
overall system’s utility based on different application and
system level attributes, governs the initial deployment of
the application and maintains the optimality during
execution despite the dynamism and uncertainty
associated with the application and the networked
environment. The self-management techniques described
in this paper are decentralized and assume minimal
knowledge about the environment to provide better
adaptability, scalability and robustness.

Fully automating the organization and optimization of
a large distributed system is a staggering challenge and
there are numerous research groups working toward this
goal. Approaches described in [3,4] targets the
development of new autonomic applications to realize the
desired benefits of self-management in a distributed
environment. In their prototype implementation, Unity [5]
achieves self-management via interconnections amongst a
number of autonomous agents, however assumes global
knowledge in order to optimally allocate the resources in

the system. Astrolabe [6] operates by creating a virtual
system-wide hierarchical database of the state of a
collection of distributed resources, which evolves as the
underlying information changes. The AutoFlow [7]
project aims to develop a self-adaptive middleware and
utilizes a hierarchical organization of underlying
resources clustered according to various system attributes
for deployment.

The rest of the paper is organized as follows. Section
2 details the design and implementation of different
aspects of application deployment process. Section 3
presents the experimental evaluation of the proposed
deployment and section 4 concludes the paper.

2. Self-Managed Deployment

 As the application components within an application
execute with different constraints and requirements, they
should be mapped to appropriate hardware resources in
the distributed environment so that their constraints are
satisfied and they provide the desired level of
performance. Mapping between these resource
requirements and the specific resources that are used to
host the application is not straightforward.

A three step process is designed to perform this
mapping as shown in Figure 1. In the first step of the
mapping, an application model is extracted that represent
an application in terms of its components and their
internal dependencies along with the estimated resource
requirements of the components and their links. The next
step involves constructing a model of the underlying
network by organizing them according to network
proximity (considering latency, bandwidth, etc). The third
and final step allocates a specific set of resources to each
application with respect to the resources required by the
application components and the resources available in the
system. The goal of the mapping is to maximize the
system’s overall utility based on certain policies,
priorities, user-defined constraints and environmental
conditions. The important aspects of this deployment
process are detailed in the following few sections.

2.1. The Application Model

 In this paper, an application is modeled as a graph
consisting of application components and the interactions
among them. Analyzing and representing software in
terms of its components and their internal dependencies is
important in order to provide the self-managing
capabilities because this is actually the system’s view of
the run-time structure of a program. Well structured
graph-based modeling of an application also makes it
easier to incorporate autonomic features into each of the
application components.

Figure 1. Application deployment process

An application is represented as a node-weighted, edge-
weighted directed graph G = (V, E, wg, cg), where each
vertex v∈V represents an application component and the
edge (u,v)∈E resembles the communication from
component u to component v. The computational weight
of a vertex v is wg(v) and represents the amount of
computation that takes place at component v and the
communication weight cg(u,v) captures the amount of
communication (volume of data transferred) between
vertices u and v. When deployed across a distributed
heterogeneous environment, these weights along with
various system characteristics, such as the processing
speed of a resource and the communication latency
between resources, determine the actual computation and
communication cost. The detailed process of the
extraction of the graph form of an application is out of the
scope of this paper. However, Reference [8] provides a
detailed description of our static analysis based
application graph construction approach.

2.2. The Network Model

 In this research, the target environment for the
deployment of the application is a distributed
environment consisting of a non-dedicated heterogeneous
and distributed collection of nodes connected by a
network. To organize the computation around this
heterogeneous and distributed pool of resources,
traditional approaches rely on the assumption that
sufficiently detailed and up-to-date knowledge of the
underlying resources is available to a central entity. While
this approach results in the optimized utilization of the
resources, it does not scale to large numbers of nodes.
Maintaining a global view of a large-scale distributed
environment becomes prohibitively expensive, even
impossible at a certain stage, considering the
unprecedented number of nodes and the unpredictability
associated with a large-scale and dynamic computing
system.

We propose a different approach that addresses the
above problems and allows the heterogeneous pool of
resources to self-organize in a structure that facilitates

Application Application
Model

Distributed
Environment

Network
Model

Deployment

Constraints
and policies

their effective use. Our aim is to organize the distributed
resources in a structure such that nodes that are closer to
each other in the structure are also closer to each other
considering network distance (latency, bandwidth, etc.).
Once structured in this way, it is possible to detect higher
utility paths locally that correspond to low latency and
high bandwidth between network nodes. As a result of
that, the deployment of the application graph can be
performed in a utility-aware way, without having full
knowledge about the underlying resources and without
calculating the utility between all pairs of network nodes.
 The proposed organization is obtained by modeling
the target distributed environment as a tree in which the
nodes correspond to compute resources, edges correspond
to network connections and execution starts at the root.
More specifically, a tree structured overlay network
[9,10] is used to model the underlying resources, which is
built on the fly on top of the existing network topology.
Having such a structure, a simple but effective autonomic
deployment algorithm is used to organize computation on
the available nodes. Here is an intuitive description of the
algorithm.

The important aspect of our design is the emergence
of the tree topology, which structures the distributed
nodes, in a utility-aware way while assuming minimal
knowledge about the environment. Each parent monitors
only a limited number of nodes and the deployment
decision is made based on this locally available monitored
data, therefore the design is appropriate for dynamic and
large-scale system. Also this model allows us to limit the
utility evaluation within a subtree performed by the parent
of that subtree, instead of performing the costly utility
evaluation globally to determine the highest utility node.
Figure 2(a) shows a small computing environment where
resources are distributed in three domains and Figure 2(b)
illustrates a tree overlay network that is built on top of
this physical topology.

Formally, the entire network is represented as a
weighted tree T = (N, L, wt, ct), where N represents the set
of computational nodes and L represents network links
among them. The weights attached to the nodes and edges
represent the associated computation and communication
costs. The computational weight wt(n) indicates the cost
associated with each unit of computation at node n. The
communication weight ct(m,n) models the cost associated
with each unit of communication of the link between
node m and n considering both bandwidth and latency.

When two nodes are not connected directly, their
communication weight is the sum of the link weights on
the path via their predecessors or successors. Therefore,
larger values of node and edge weights translate to slower
nodes and slower communication respectively.

To construct an overlay tree, each node is assumed to
have a children list signifying the URLs of its neighbors
that have direct connection with it. The problem of how
to generate this list is out of scope of this research
however can be addressed by using several tools [11,12].
Once a user starts an application in his/her machine, the
graph representation is extracted from the application
code. The initiator node then delegates some of the graph
vertices (application components) to the best utility nodes
considering all the nodes listed in its children list. The
delegated nodes again spread the computation in this
manner. The topology of the resulting overlay network
thus becomes a tree with the originating machine at the
root node.

Each node in the tree either completely executes
the tasks assigned to it or divides the
computation (if it is too large to execute by itself
within a reasonable amount of time) and
propagates the parts down the hierarchy to its
best child’s subtree.

n9

n10

n11

n13
n12

n2 n3

n1

Domain 2

Domain 3

Figure 2(a). Sample distributed environment.

Figure 2(b). Overlay Tree.

n4
n5

n6
n8

n7

n1

n2 n3 n4

n5 n8

n6 n7

n11

n9 n12 n13

n10

Domain 1

Root

2.3. The Utility Function

 In this research, both the initial placement of
application components and their reconfigurations are
governed by utilizing utility functions. Several
applications and environment specific attributes are
combined in a single utility function. This multi-attribute
function returns a scalar value signifying system’s overall
utility for each possible state of a system and the goal
becomes to select a state that maximizes system’s overall
utility. During execution, resource allocation and other
operating conditions may change; the corresponding
change in the overall utility of the system can be
calculated by this utility function and decisions can be
taken toward maximizing this value. As computing
environments are becoming increasingly large,
distributed, complex and dynamic in nature, the optimal
actions are likely to evolve over time and a utility
function that continuously computes the most desired
state is expected to be more suitable in such cases.

In general, our utility function considers the following
application, environment and user specific high-level
policies:

1. While mapping partitions containing a large
number of application components in the tree
network, node that leads to a wider subtree
(higher degree of connectivity) should be
preferred as higher degree allows more directions
for partition growth.

2. Faster and less busy nodes should be favored over
slower and overloaded nodes when assigning
components to resources.

3. Nodes with faster communication links should be
preferred over nodes with slower communication
links when dealing with communication intensive
components.

4. High priority applications should be preferred
during deployment over low priority jobs.

2.4. Initial Deployment

Once both the application and underlying resources

have been modeled, the deployment problem reduces to
the mapping of different application components and their
interconnections to different nodes in the target
environment and network links among them so that all
requirements and constraints are satisfied and system’s
overall utility is maximized. The assumption is that the
application can be submitted to any node, which acts as
the root or starting point of the application. Also the
application may end its execution either at the root node
or at one or more clients at different destination nodes.

When the application graph G is submitted to the root
node of the tree network, the root then decides which
application components to execute itself and which

components to forward to its child’s sub-tree so that the
overall mapping results the highest utility. The child, who
has been delegated a set of components again deploys
them in the same way to its subtrees. For effective
delegation of components at a particular node having |P|
children, graph coarsening techniques [13] is exploited to
collapse several application components into a single
partition, so that ≤ |P| partitions are generated at that
stage. The coarsened graph is projected back to the
original or to a more refined graph once it is delegated to
a child.

In the above approach, each parent selects the highest
utility child to delegate a particular partition (set of
components). Finding the highest utility child to delegate
a partition to means finding the highest utility mapping M
of the edges (vj,vk) where vj∈Vr (represents the set of
components that the parent decided to execute itself) and
vk∈Vs (represents the set of components that belong to a
partition that a parent decided to delegate). More
formally, a mapping needs to be produced, which assigns
each vk∈Vs to a nq∈N in a way such that the network
node nq is capable of fulfilling the requirements and
constraints of application node vk and the edge (vj,vk) is
mapped to the highest utility link considering all children
available at that stage for delegation. The utility of an
edge (vj,vk) is represented as U(vj,vk), and returns the
utility achieved due to the mapping of the edge (vj,vk) on
certain network link. More specifically, the utility of an
edge (vj,vk), while mapped to the network link (np,nq),
where np represents the parent in the tree-shaped
network where vj is already mapped and nq represents a
potential child for delegating application component vk, is
calculated by using the following function:

() ()
() ()() () ()()qptkjgqtkg

q
kj nnwvvwfnwvwf

nd
vvU

,,
,

21 ×+×
=

where d(nq) represents the number of children of network
tree node nq, function f1 models the cost of processing
vertex vk in node nq and f2 models the cost resulting from
mapping edge (vj,vk) to link (np,nq).

The utility model in the above scenario is the
"highest-degree child with the fastest computation
capability and fastest communication link is more suitable
for utility". To ensure that the application graph partitions
with the largest number of components are delegated to
the highest degree child, candidate partitions are sorted
according to their sizes and then deployed according to
that order. In the case of simultaneous scheduling of
multiple applications with different priorities, the system
needs to guarantee that higher priority applications
execute before applications with lower priority. To
achieve this, applications are ordered according to their
priorities and then mapped following that order. The

overall utility of an application graph G with priority p
due to deployment M is then calculated as:

∑ ∈
×=

Evv kj
kj

vvUpMGU
),(

),(),(

Therefore, at the level of an individual application the
problem of self-configuration becomes the problem of
finding highest utility mapping M between edges E in the
application graph and the Links L of the network graph.

2.5. Self-Optimization

After initial placement, the environment may change
and as a result the utility may drop. Therefore it is
necessary to monitor the utility and trigger
reconfiguration as required. Reconfiguration is triggered
in response to a variety of events such as changes in
network delays, changes in available bandwidth, changes
in available processing capability, etc. Some business
specific events may also trigger reconfiguration such as
the arrival of a higher priority job, etc. Reconfiguration
within a subtree is expected to be a less expensive process
because of the way the underlying network is modeled.
Each parent node periodically measures the workload at
each child and its bandwidth to the child and
consequently changes computational and communication
weights attached to that child. By incorporating this
monitored information into the utility function, the parent
then observe the change in utility due to the changes in
network and compute nodes, and therefore
reconfiguration is initiated autonomously.
Reconfiguration is costly and disruptive, therefore, it is
not feasible to initiate reconfiguration unless it is
productive. This research plans to trigger reconfiguration
whenever the utility drops more than a certain threshold
(user specified or system generated by comparing the
utility during initial deployment).

3. Experimental Evaluation

We evaluate the performance of the self-managed
deployment using a simulation study. Our experiments
were performed in a dual, quad-core Xeon processor with
16GB of RAM. We used system’s overall business utility
as the performance metric in all our experiments.

3.1 Simulation Setup

We used GT-ITM internetwork topology generator [14]
to generate a sample large-scale, heterogeneous
computing environment for evaluating our self-
deployment algorithm. We choose the Transit-Stub model
that correlates well with the structure of the Internet,
including hierarchy and locality. Table 1 lists the relevant

Table 1: Network model parameters used in this study

The number of Transit Nodes 4
The number of stub nodes/transit node 32
Number of total network nodes 132
Number of total network links 1986
Stub-stub bandwidth 100Mbps
Transit-transit and transit-stub bandwidth 500Mbps
Node’s processing weight [20-80]

parameters of the network topology used in this study. To
generate traffic that simulates real world workload and
bandwidth consumption in a shared environment, we used
the ns-2 simulation package [15]. The traffic generator
script cbrgen.tcl is available under ~ns/indep-utils/cmu-
scen-gen and was used to create 1000 CBR traffic
connections between network nodes. The simulation was
then carried out for 2500 seconds and link delays (amount
of time required for a packet to traverse a link considering
both bandwidth and propagation delay) are measured
between the directly connected nodes in the presence of
the random traffic in 10 second interval period. Based on
these snapshots, we then determined the communication
weights of the network links in the presence of dynamic
traffic.

We ran our tree construction algorithm that creates a
tree overlay on top of the abovementioned network
topology with the application originating machine at the
root node. To create the children list, at first we went
through all network links and make a list for each node
n∈ N, that n has direct connections with. Our tree
construction algorithm then finalizes the children list for
each network node n, starting from the root node,
ensuring that adding a node to n’s children list does not
create a cycle.

3.2 Experiments and Results

We designed experiments that compare the utility and
cost of a deployed application graph using optimal
schemes based on the original network topology and
global knowledge about the system as opposed to our
approach that uses the self-organized tree and
decentralized deployment decisions based on minimal
amount of locally available knowledge. In the optimal
scheme, the assumption is that a central node monitors
every computational and communication resources in the
system and based on this global knowledge makes
optimal deployment decision. However, in this approach
the central node becomes a bottleneck with a large
number of communications arising from constant
monitoring of all the resources in the system. Even if it is
possible to gather up-to-date information about all the
resources in a central node, finding optimal deployment

means trying every possible mapping of the application
components to the network resources and selecting the
one that produces optimal results, which grows
exponentially with the number of nodes in the network
and the number of vertices in the application graph.

Because of its exponential growth, the above
mentioned optimal scheme becomes very costly even
after considering a small number of application graph
vertices. Therefore we developed another semi-optimal
scheme that assumes global knowledge but instead of
trying every possible mapping it uses heuristics to limit
the number of cases to evaluate. For both schemes, we
applied Dijkstra’s All Pair Shortest Path algorithm at the
central node to calculate the communication weights
between every pair of network nodes. We also assumed
one-to-one mapping of the graph vertices to the network
nodes in all three cases. The results are presented in
Figures 3 and Table 2. Figure 3 illustrates that the utility
results from our approach is close to what is achieved by

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

4 6 8

Number of Vertices in the Application Graph

U
til

ity

Autonomic

Semi-optimal

Optimal

Figure 3. Utility Comparison

0
10
20
30
40
50
60
70
80

4 6 8 10 12 16

Number of Vertices in the Application Graph

Ti
m

e
(m

ic
ro

se
co

nd
)

Autonomic

semi-optimal

Figure 4. Scalability

Table 2. Execution Time Comparison

of vertices Optimal Semi-optimal Autonomic

4 8712 μs 37 μs 8 μs
6 15.68 sec 72 μs 11 μs
8 1 hour and

39 minute
134 μs 72 μs

using optimal approach. It is also evident that, in some
cases the semi-optimal approach produces less utility than
our approach.

The reason for that is that since semi-optimal
deployment takes a greedy approach based on utilities
between each pair of nodes in the topology, the highest
utility node at a certain stage may already have been
delegated in some former stage. Table 2 reveals the cost
associated with each approach and as expected the
optimal approach incurs huge cost with the increasing
number of vertices in the application graph and soon
become inapplicable. To evaluate the scalability of our
approach, we experimented the time taken by our
approach to calculate the initial deployment for increasing
number of application vertices and compared them with
the times needed by the semi-optimal approach. The
results are presented in Figure 4 and show that the cost
incurred by our approach is minimal, therefore is well
suited for larger applications.

4. Conclusion

In this paper, we have developed techniques that
enable scalable and efficient deployment of user
applications in a highly dynamic and large-scale
distributed environment. The approach is to construct an
application model, represented as a graph of application
components and their interactions and then deploy that
graph across the underlying distributed resources self-
organized as a utility-aware tree. A suitable utility
function is derived that controls both initial deployment
and reconfiguration ensuring that system’s overall utility
is maximized while certain policies and constraints are
satisfied. The main goal of our experimental study was to
analyze the tradeoff between optimality and the execution
time of our autonomic deployment. The results of our
experiments show that the utility achieved by our
approach is comparable with optimal utility while the cost
is far less than the optimal approach. Our approach for
self-configuration is therefore scalable, robust and more
suitable for larger networks and applications. In future,
we like to conduct experiments to evaluate our self-
optimization approach that dynamically reconfigure the
application graph based on the changes in the network.

References

[1] IBM Research. Autonomic Computing.

http://www.research.ibm.com/autonomic.
[2] W.E. Walsh, G. Tesauro, J.O. Kephart, R. Das, "Utility

functions in autonomic systems", 1st International
Conference on Autonomic Computing (ICAC), 2004.

[3] M. Parashar, H. Liu, Z. Li, V. Matossian, C. Schmidt, G.
Zhang and S. Hariri, "AutoMate: Enabling Autonomic Grid
Applications", Cluster Computing: The Journal of

Networks, Software Tools, and Applications, Special Issue
on Autonomic Computing, Kluwer Academic Publishers,
Vol. 9, No. 1, 2006.

[4] X. Dong, S. Hariri, L. Xue, H. Chen, M. Zhang, S.
Pavuluri, and S. Rao, "AUTONOMIA: An Autonomic
Computing Environment", Proc. of the 2003 IEEE
International Performance, Computing, and
Communication Conference, 2003.

[5] D. M. Chess, A. Segal, I. Whalley and S. R. White, "Unity:
Experiences with a Prototype Autonomic Computing
System", 1st International. Conference. on Autonomic
Computing (ICAC), 2004.

[6] R. V. Renesse , K. P. Birman , W. Vogels. "Astrolabe: A
robust and scalable technology for distributed system
monitoring, management, and data mining", ACM
Transactions on Computer Systems (TOCS), Vol.21 No.2,
2003.

[7] K. Schwan et al. "Autoflow: Autonomic information flows
for critical information systems", Autonomic Computing:
Concepts, Infrastructure, and Applications, CRC Press,
2006.

[8] D. Deb, M.M. Fuad, M.J. Oudshoorn, "Towards
Autonomic Distribution of Existing Object Oriented
Programs", International Conference on Autonomic and
Autonomous Systems (ICAS), 2006.

[9] O. Beaumont, A. Legrand, Y. Robert, L. Carter, J.
Ferrante, "Bandwidth-Centric Allocation of Independent
Tasks on Heterogeneous Platforms", International Parallel
and Distributed Processing Symposium (IPDPS), 2002.

[10] B. Kreaseck, L. Carter, H. Casanova, and J. Ferrante,
"Autonomous protocols for bandwidth-centric scheduling
of independent-task applications", International Parallel
and Distributed Processing Symposium (IPDPS), 2003.

[11] M. Ripeanu; I. Foster and A. Iamnitchi, "Mapping the
Gnutella Network: Properties of Large-Scale Peer-to-Peer
Systems and Implications for System Design", IEEE
Internet Computing, Vol. 6, No. 1, 2002.

[12] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S.
Shenker, "A Scalable Content-Addressable Network", In
Proceedings of ACM SIGCOMM 2001.

[13] G. Karypis and V. Kumar, "Multilevel k-way Partitioning
Scheme for Irregular Graphs", Journal of Parallel and
Distributed Computing, vol. 48, 1998, pp. 86-129.

[14] GT-ITM: Georgia Tech Internetwork Topology Models.
http://www.cc.gatech.edu/projects/gtitm.

[15] The Network Simulator ns-2. http://www.isi.edu/nsnam/ns.

