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Abstract 

This paper proposes algorithms and mechanisms for 
achieving self-managed deployment of computationally 
intensive scientific and engineering applications in highly 
dynamic and large-scale distributed environment. The 
primary focus is on the modeling of the application and 
underlying architecture into a common abstraction and 
on the incorporations of autonomic features to those 
abstractions to achieve self-managed deployment. To 
represent the underlying heterogeneous infrastructure, a 
hierarchical (tree) model of distributed resources has 
been adopted that offers self-organization of distributed 
nodes in a utility-aware way. To accomplish the self-
adaptive deployment, a utility-function has been 
formulated that governs both the initial deployment of an 
application and maintains the optimality during execution 
despite the dynamism and uncertainty associated with the 
application and the networked environment. In our 
approach, the deployment decisions are made solely 
based on locally available information and without costly 
global communication or synchronization. The self-
management is therefore decentralized to provide better 
adaptability, scalability and robustness. 
 
1. Introduction 
 

Many scientific fields, such as genomics, astrophysics, 
geophysics, computational neuroscience or bioinformatics 
require massive computational power and resources and 
can benefit from a large-scale integrated infrastructure, 
formed by harnessing the spare compute cycles of 
distributed computation and communication resources. 
Typically these applications composed of a large number 
of distributed components and it is important to deploy 
them in the underlying network in a way that meets the 
computational power and network bandwidth 
requirements of those components and their interactions. 
However satisfying these requirements in a large-scale, 
heterogeneous, and highly dynamic distributed 
environment is a significant challenge. As systems and 
application grow in scale and complexity, attaining the 
desired level of performance in this uncertain 

environment using current approaches based on global 
knowledge, centralized scheduling and manual 
reallocation becomes infeasible. Therefore, self-managed 
deployment is paramount in order to lower operation 
costs, to allow developers to largely ignore complex 
distribution issues, to manage system complexities and to 
maximize overall utilization of the system. 

This paper proposes algorithms and mechanisms for 
achieving self-managed deployment of computationally 
intensive scientific and engineering applications in highly 
dynamic and unpredictable distributed environment. The 
main focus of this paper is to model the application and 
the underlying architecture into a common abstraction 
and to incorporate autonomic features [1] to those 
abstractions to achieve self-managed deployment. To 
model the underlying heterogeneous infrastructure, we 
developed techniques that allow the distributed resources 
to self-organize in a utility-aware way while assuming 
minimal knowledge about the system. To accomplish 
self-managed deployment of the application components 
to the network nodes, we designed a scalable and 
adaptive deployment algorithm that is governed by a 
utility function [2]. The utility function, which returns the 
overall system’s utility based on different application and 
system level attributes, governs the initial deployment of 
the application and maintains the optimality during 
execution despite the dynamism and uncertainty 
associated with the application and the networked 
environment. The self-management techniques described 
in this paper are decentralized and assume minimal 
knowledge about the environment to provide better 
adaptability, scalability and robustness.  

Fully automating the organization and optimization of 
a large distributed system is a staggering challenge and 
there are numerous research groups working toward this 
goal. Approaches described in [3,4] targets the 
development of new autonomic applications to realize the 
desired benefits of self-management in a distributed 
environment. In their prototype implementation, Unity [5] 
achieves self-management via interconnections amongst a 
number of autonomous agents, however assumes global 
knowledge in order to optimally allocate the resources in 



the system. Astrolabe [6] operates by creating a virtual 
system-wide hierarchical database of the state of a 
collection of distributed resources, which evolves as the 
underlying information changes. The AutoFlow [7] 
project aims to develop a self-adaptive middleware and 
utilizes a hierarchical organization of underlying 
resources clustered according to various system attributes 
for deployment. 

The rest of the paper is organized as follows. Section 
2 details the design and implementation of different 
aspects of application deployment process. Section 3 
presents the experimental evaluation of the proposed 
deployment and section 4 concludes the paper. 
 
2. Self-Managed Deployment 
 

 As the application components within an application 
execute with different constraints and requirements, they 
should be mapped to appropriate hardware resources in 
the distributed environment so that their constraints are 
satisfied and they provide the desired level of 
performance. Mapping between these resource 
requirements and the specific resources that are used to 
host the application is not straightforward.  

A three step process is designed to perform this 
mapping as shown in Figure 1. In the first step of the 
mapping, an application model is extracted that represent 
an application in terms of its components and their 
internal dependencies along with the estimated resource 
requirements of the components and their links. The next 
step involves constructing a model of the underlying 
network by organizing them according to network 
proximity (considering latency, bandwidth, etc). The third 
and final step allocates a specific set of resources to each 
application with respect to the resources required by the 
application components and the resources available in the 
system.  The goal of the mapping is to maximize the 
system’s overall utility based on certain policies, 
priorities, user-defined constraints and environmental 
conditions. The important aspects of this deployment 
process are detailed in the following few sections. 
 
2.1. The Application Model 
 

 In this paper, an application is modeled as a graph 
consisting of application components and the interactions 
among them. Analyzing and representing software in 
terms of its components and their internal dependencies is 
important in order to provide the self-managing 
capabilities because this is actually the system’s view of 
the run-time structure of a program. Well structured 
graph-based modeling of an application also makes it 
easier to incorporate autonomic features into each of the 
application components.  
 

 
 

 
 
 

 
 
 
 
 
 

Figure 1. Application deployment process  
 
An application is represented as a node-weighted, edge-
weighted directed graph G = (V, E, wg, cg), where each 
vertex v∈V represents an application component and the 
edge (u,v)∈E resembles the communication from 
component u to component v. The computational weight 
of a vertex v is wg(v) and represents the amount of 
computation that takes place at component v and the 
communication weight cg(u,v) captures the amount of 
communication (volume of data transferred) between 
vertices u and v. When deployed across a distributed 
heterogeneous environment, these weights along with 
various system characteristics, such as the processing 
speed of a resource and the communication latency 
between resources, determine the actual computation and 
communication cost. The detailed process of the 
extraction of the graph form of an application is out of the 
scope of this paper. However, Reference [8] provides a 
detailed description of our static analysis based 
application graph construction approach. 
 
2.2. The Network Model 
 
  In this research, the target environment for the 
deployment of the application is a distributed 
environment consisting of a non-dedicated heterogeneous 
and distributed collection of nodes connected by a 
network. To organize the computation around this 
heterogeneous and distributed pool of resources, 
traditional approaches rely on the assumption that 
sufficiently detailed and up-to-date knowledge of the 
underlying resources is available to a central entity. While 
this approach results in the optimized utilization of the 
resources, it does not scale to large numbers of nodes. 
Maintaining a global view of a large-scale distributed 
environment becomes prohibitively expensive, even 
impossible at a certain stage, considering the 
unprecedented number of nodes and the unpredictability 
associated with a large-scale and dynamic computing 
system. 

We propose a different approach that addresses the 
above problems and allows the heterogeneous pool of 
resources to self-organize in a structure that facilitates 
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their effective use. Our aim is to organize the distributed 
resources in a structure such that nodes that are closer to 
each other in the structure are also closer to each other 
considering network distance (latency, bandwidth, etc.). 
Once structured in this way, it is possible to detect higher 
utility paths locally that correspond to low latency and 
high bandwidth between network nodes. As a result of 
that, the deployment of the application graph can be 
performed in a utility-aware way, without having full 
knowledge about the underlying resources and without 
calculating the utility between all pairs of network nodes. 
 The proposed organization is obtained by modeling 
the target distributed environment as a tree in which the 
nodes correspond to compute resources, edges correspond 
to network connections and execution starts at the root. 
More specifically, a tree structured overlay network 
[9,10] is used to model the underlying resources, which is 
built on the fly on top of the existing network topology. 
Having such a structure, a simple but effective autonomic 
deployment algorithm is used to organize computation on 
the available nodes. Here is an intuitive description of the 
algorithm.   
 
 
 
 
 
 
 

The important aspect of our design is the emergence 
of the tree topology, which structures the distributed 
nodes, in a utility-aware way while assuming minimal 
knowledge about the environment. Each parent monitors 
only a limited number of nodes and the deployment 
decision is made based on this locally available monitored 
data, therefore the design is appropriate for dynamic and 
large-scale system. Also this model allows us to limit the 
utility evaluation within a subtree performed by the parent 
of that subtree, instead of performing the costly utility 
evaluation globally to determine the highest utility node. 
Figure 2(a) shows a small computing environment where 
resources are distributed in three domains and Figure 2(b) 
illustrates a tree overlay network that is built on top of 
this physical topology.  

Formally, the entire network is represented as a 
weighted tree T = (N, L, wt, ct), where N represents the set 
of computational nodes and L represents network links 
among them. The weights attached to the nodes and edges 
represent the associated computation and communication 
costs. The computational weight wt(n) indicates the cost 
associated with each unit of computation at node n. The 
communication weight ct(m,n) models the cost associated 
with each unit of communication of the link between 
node m and n considering both bandwidth and latency.  

 

 
 
 
 
 

 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

When two nodes are not connected directly, their 
communication weight is the sum of the link weights on 
the path via their predecessors or successors. Therefore, 
larger values of node and edge weights translate to slower 
nodes and slower communication respectively.  

To construct an overlay tree, each node is assumed to 
have a children list signifying the URLs of its neighbors 
that have direct connection with it. The problem of how 
to generate this list is out of scope of this research 
however can be addressed by using several tools [11,12]. 
Once a user starts an application in his/her machine, the 
graph representation is extracted from the application 
code. The initiator node then delegates some of the graph 
vertices (application components) to the best utility nodes 
considering all the nodes listed in its children list. The 
delegated nodes again spread the computation in this 
manner. The topology of the resulting overlay network 
thus becomes a tree with the originating machine at the 
root node.  

 
 

Each node in the tree either completely executes 
the tasks assigned to it or divides the 
computation (if it is too large to execute by itself 
within a reasonable amount of time) and 
propagates the parts down the hierarchy to its 
best child’s subtree.    
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Figure 2(a). Sample distributed environment.

Figure 2(b). Overlay Tree.
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2.3. The Utility Function 
 

 In this research, both the initial placement of 
application components and their reconfigurations are 
governed by utilizing utility functions. Several 
applications and environment specific attributes are 
combined in a single utility function. This multi-attribute 
function returns a scalar value signifying system’s overall 
utility for each possible state of a system and the goal 
becomes to select a state that maximizes system’s overall 
utility. During execution, resource allocation and other 
operating conditions may change; the corresponding 
change in the overall utility of the system can be 
calculated by this utility function and decisions can be 
taken toward maximizing this value. As computing 
environments are becoming increasingly large, 
distributed, complex and dynamic in nature, the optimal 
actions are likely to evolve over time and a utility 
function that continuously computes the most desired 
state is expected to be more suitable in such cases. 

In general, our utility function considers the following 
application, environment and user specific high-level 
policies: 

1. While mapping partitions containing a large 
number of application components in the tree 
network, node that leads to a wider subtree 
(higher degree of connectivity) should be 
preferred as higher degree allows more directions 
for partition growth. 

2. Faster and less busy nodes should be favored over 
slower and overloaded nodes when assigning 
components to resources. 

3. Nodes with faster communication links should be 
preferred over nodes with slower communication 
links when dealing with communication intensive 
components. 

4. High priority applications should be preferred 
during deployment over low priority jobs. 

   
2.4. Initial Deployment 

 
Once both the application and underlying resources 

have been modeled, the deployment problem reduces to 
the mapping of different application components and their 
interconnections to different nodes in the target 
environment and network links among them so that all 
requirements and constraints are satisfied and system’s 
overall utility is maximized. The assumption is that the 
application can be submitted to any node, which acts as 
the root or starting point of the application. Also the 
application may end its execution either at the root node 
or at one or more clients at different destination nodes.  

When the application graph G is submitted to the root 
node of the tree network, the root then decides which 
application components to execute itself and which 

components to forward to its child’s sub-tree so that the 
overall mapping results the highest utility. The child, who 
has been delegated a set of components again deploys 
them in the same way to its subtrees. For effective 
delegation of components at a particular node having |P| 
children, graph coarsening techniques [13] is exploited to 
collapse several application components into a single 
partition, so that ≤ |P| partitions are generated at that 
stage. The coarsened graph is projected back to the 
original or to a more refined graph once it is delegated to 
a child.   

In the above approach, each parent selects the highest 
utility child to delegate a particular partition (set of 
components). Finding the highest utility child to delegate 
a partition to means finding the highest utility mapping M 
of the edges (vj,vk) where vj∈Vr (represents the set of 
components that the parent decided to execute itself) and 
vk∈Vs (represents the set of components that belong to a 
partition that a parent decided to delegate). More 
formally, a mapping needs to be produced, which assigns 
each vk∈Vs to a nq∈N  in a way such that the network 
node nq is capable of fulfilling the requirements and 
constraints of application node vk and the edge (vj,vk) is 
mapped to the highest utility link considering all children 
available at that stage for delegation. The utility of an 
edge (vj,vk) is represented as U(vj,vk), and returns the 
utility achieved due to the mapping of the edge (vj,vk) on 
certain network link. More specifically, the utility of an 
edge (vj,vk), while mapped to the network link  (np,nq),  
where  np  represents  the parent  in  the  tree-shaped 
network where vj is already mapped and nq represents a 
potential child for delegating application component vk, is 
calculated by using the following function: 
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where d(nq) represents the number of children of network 
tree node nq, function f1 models the cost of processing 
vertex vk in node nq and f2 models the cost resulting from 
mapping edge (vj,vk) to link (np,nq).  

The utility model in the above scenario is the 
"highest-degree child with the fastest computation 
capability and fastest communication link is more suitable 
for utility". To ensure that the application graph partitions 
with the largest number of components are delegated to 
the highest degree child, candidate partitions are sorted 
according to their sizes and then deployed according to 
that order. In the case of simultaneous scheduling of 
multiple applications with different priorities, the system 
needs to guarantee that higher priority applications 
execute before applications with lower priority. To 
achieve this, applications are ordered according to their 
priorities and then mapped following that order. The 



overall utility of an application graph G with priority p 
due to deployment M is then calculated as: 
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Therefore, at the level of an individual application the 
problem of self-configuration becomes the problem of 
finding highest utility mapping M between edges E in the 
application graph and the Links L of the network graph.  
 
2.5. Self-Optimization 
 

After initial placement, the environment may change 
and as a result the utility may drop. Therefore it is 
necessary to monitor the utility and trigger 
reconfiguration as required. Reconfiguration is triggered 
in response to a variety of events such as changes in 
network delays, changes in available bandwidth, changes 
in available processing capability, etc. Some business 
specific events may also trigger reconfiguration such as 
the arrival of a higher priority job, etc. Reconfiguration 
within a subtree is expected to be a less expensive process 
because of the way the underlying network is modeled. 
Each parent node periodically measures the workload at 
each child and its bandwidth to the child and 
consequently changes computational and communication 
weights attached to that child. By incorporating this 
monitored information into the utility function, the parent 
then observe the change in utility due to the changes in 
network and compute nodes, and therefore 
reconfiguration is initiated autonomously. 
Reconfiguration is costly and disruptive, therefore, it is 
not feasible to initiate reconfiguration unless it is 
productive. This research plans to trigger reconfiguration 
whenever the utility drops more than a certain threshold 
(user specified or system generated by comparing the 
utility during initial deployment). 
 
3. Experimental Evaluation 
 

We evaluate the performance of the self-managed 
deployment using a simulation study. Our experiments 
were performed in a dual, quad-core Xeon processor with 
16GB of RAM. We used system’s overall business utility 
as the performance metric in all our experiments. 

 
3.1 Simulation Setup 

 
We used GT-ITM internetwork topology generator [14] 
to generate a sample large-scale, heterogeneous 
computing environment for evaluating our self-
deployment algorithm. We choose the Transit-Stub model 
that correlates well with the structure of the Internet, 
including hierarchy and locality. Table 1 lists the relevant 

Table 1: Network model parameters used in this study 
 

The number of Transit Nodes 4 
The number of stub nodes/transit node 32 
Number of total network nodes 132 
Number of total network links 1986 
Stub-stub bandwidth 100Mbps 
Transit-transit and transit-stub bandwidth 500Mbps 
Node’s processing weight [20-80] 

 
parameters of the network topology used in this study. To 
generate traffic that simulates real world workload and 
bandwidth consumption in a shared environment, we used 
the ns-2 simulation package [15]. The traffic generator 
script cbrgen.tcl is available under ~ns/indep-utils/cmu- 
scen-gen and was used to create 1000 CBR traffic 
connections between network nodes. The simulation was 
then carried out for 2500 seconds and link delays (amount 
of time required for a packet to traverse a link considering 
both bandwidth and propagation delay) are measured 
between the directly connected nodes in the presence of 
the random traffic in 10 second interval period. Based on 
these snapshots, we then determined the communication 
weights of the network links in the presence of dynamic 
traffic.  

We ran our tree construction algorithm that creates a 
tree overlay on top of the abovementioned network 
topology with the application originating machine at the 
root node. To create the children list, at first we went 
through all network links and make a list for each node 
n∈ N, that n has direct connections with. Our tree 
construction algorithm then finalizes the children list for 
each network node n, starting from the root node, 
ensuring that adding a node to n’s children list does not 
create a cycle.  

 
3.2 Experiments and Results 
 

We designed experiments that compare the utility and 
cost of a deployed application graph using optimal 
schemes based on the original network topology and 
global knowledge about the system as opposed to our 
approach that uses the self-organized tree and 
decentralized deployment decisions based on minimal 
amount of locally available knowledge. In the optimal 
scheme, the assumption is that a central node monitors 
every computational and communication resources in the 
system and based on this global knowledge makes 
optimal deployment decision. However, in this approach 
the central node becomes a bottleneck with a large 
number of communications arising from constant 
monitoring of all the resources in the system. Even if it is 
possible to gather up-to-date information about all the 
resources in a central node, finding optimal deployment 



means trying every possible mapping of the application 
components to the network resources and selecting the 
one that produces optimal results, which grows 
exponentially with the number of nodes in the network 
and the number of vertices in the application graph.  

Because of its exponential growth, the above 
mentioned optimal scheme becomes very costly even 
after considering a small number of application graph 
vertices. Therefore we developed another semi-optimal 
scheme that assumes global knowledge but instead of 
trying every possible mapping it uses heuristics to limit 
the number of cases to evaluate. For both schemes, we 
applied Dijkstra’s All Pair Shortest Path algorithm at the 
central node to calculate the communication weights 
between every pair of network nodes. We also assumed 
one-to-one mapping of the graph vertices to the network 
nodes in all three cases.  The results are presented in 
Figures 3 and Table 2. Figure 3 illustrates that the utility 
results from our approach is close to what is achieved by  
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Figure 3. Utility Comparison 
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Figure 4. Scalability  

 
Table 2. Execution Time Comparison  

 
# of vertices Optimal Semi-optimal Autonomic 

4 8712 μs 37 μs 8 μs 
6 15.68 sec  72 μs  11 μs  
8 1 hour and 

39 minute 
134 μs  72  μs  

 

using optimal approach. It is also evident that, in some 
cases the semi-optimal approach produces less utility than 
our approach. 

The reason for that is that since semi-optimal 
deployment takes a greedy approach based on utilities 
between each pair of nodes in the topology, the highest 
utility node at a certain stage may already have been 
delegated in some former stage. Table 2 reveals the cost 
associated with each approach and as expected the 
optimal approach incurs huge cost with the increasing 
number of vertices in the application graph and soon 
become inapplicable. To evaluate the scalability of our 
approach, we experimented the time taken by our 
approach to calculate the initial deployment for increasing 
number of application vertices and compared them with 
the times needed by the semi-optimal approach. The 
results are presented in Figure 4 and show that the cost 
incurred by our approach is minimal, therefore is well 
suited for larger applications. 
 
4. Conclusion 
 

In this paper, we have developed techniques that 
enable scalable and efficient deployment of user 
applications in a highly dynamic and large-scale 
distributed environment. The approach is to construct an 
application model, represented as a graph of application 
components and their interactions and then deploy that 
graph across the underlying distributed resources self-
organized as a utility-aware tree. A suitable utility 
function is derived that controls both initial deployment 
and reconfiguration ensuring that system’s overall utility 
is maximized while certain policies and constraints are 
satisfied. The main goal of our experimental study was to 
analyze the tradeoff between optimality and the execution 
time of our autonomic deployment. The results of our 
experiments show that the utility achieved by our 
approach is comparable with optimal utility while the cost 
is far less than the optimal approach. Our approach for 
self-configuration is therefore scalable, robust and more 
suitable for larger networks and applications. In future, 
we like to conduct experiments to evaluate our self-
optimization approach that dynamically reconfigure the 
application graph based on the changes in the network.   
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