
Environment Variable and Set-UID Program Lab

Overview​: The purpose of this lab was to understand, and be able to control environment
variables to affect program and system behaviors. This also aided in describing the
vulnerabilities that can be exploited by abusing environment variables.

Tasks​:

Task 1: Manipulating Environment Variables

Purpose:​ Be able to print, and set environment variables.

Step 1: Use “env” to print the environment variables.

Step 2: Use “export” to set an environment variable.

Observations & Conclusion:​ The environment variables are easily accessed through bash, and
can be set using the “export” command.

Task 2: Passing Environment Variables from Parent Process to Child Process

Purpose:​ Understand how fork() creates a new process, and how the child created as a result of
that new process interacts and compares with its parent.

Step 1: The given code is compiled, and ran. The code prints the environment variables of the
child ​process. The output of this is saved to a file. The output is nothing.

Step 2: The given code is compiled, and ran. The code prints the environment variables of the
parent ​process. The output of this is saved to a file. The output is the environment variables of

IMAGE REDACTED

 IMAGE REDACTED

IMAGE REDACTED

Solution REDACTED

the parent process.

Step 3: The differences between the printouts of the child environment variables, and the parent
environment variables are compared.

Observations & Conclusion:​ A child is supposed to be a copy of it’s parent, with a few minor
changes like PID. Therefore, it should inherit all of its parent process’s environment variables.
The printout given from this task of the parent process is all of its environment variables, while
the printout of its child is null. This is because we passed in null, instead of environ, for the
environment of the child when we forked. Therefore, when we call printenv(), there is no
environment to print from.

Task 3: Environment Variables and execve()

Purpose:​ Understand how we can modify and change environment variables using the execve()
command. This command never returns, so the program is run in it’s calling process. We want
to determine what happens to the environment variables.

IMAGE REDACTED

IMAGE REDACTED

Observation and conclusion REDACTED

Description REDACTED

Step 1: The given code is compiled, and ran. The code executes the “env” command, and prints
out the environment variables of the current process. Since this step, we passed in NULL, the
output is nothing.

Step 2: We modified the execve statement to be: ​execve("/usr/bin/env", argv, environ). ​Since
we passed in the environ argument this time, the program prints out all the environment
variables of the current process.

Observations & Conclusion:​ The last argument slot within execve() is for the environment
variables associated with that process. When we passed in null, then execve() executed the
“env” command on nothing, but when we passed in the environment variables of the current
process, we were able to view them in the result.

Task 4: Environment Variables and system()

Purpose​: Understand how environment variables are affected when using system(). This is
unlike execve(), because it requests the shell to execute the command. This will hopefully show
us that system() is a lot sketchier than execve().

Step 1: Compile and run the given code. This calls the “env” command using system, and
outputs the list of environment variables.

REDACTED

REDACTED

REDACTED

(End of example lab report format)

REDACTED

REDACTED

(Purpose is not needed, but it does improve the quality of the report)

