y

CSCIl 476: Computer Security

Lecture 5: Set-UID and Environment Variables

Reese Pearsall
Fall 2022

*all images are stolen from the internet 1

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

Announcements

Lab 1 Due FRIDAY 9/16 @ 11:59 PM
 Shouldn’t be too bad

Note taker still needed

MONTANA

STATE UNIVERSITY

M

How would you protect your computer and its resources?

MONTANA

STATE UNIVERSITY

M

Access Control

who can do what to whom?

/ \

users/groups Objects |
what is their identity? Usually things on a filesystem

permissions (read/write/execute)
Ok, | know the who— what are you permitted to do?

MONTANA
STATE UNIVERSITY

Access Control who can do what to whom?

OBJECTS
File 1 File 2 File 3 File 4

User A

SUBJECTS User B

User C

Access Control Matrix

What are some issues with this?

MONTANA

STATE UNIVERSITY

Access Control who can do what to whom?

File 1—> A > B > C User A —>{File 1 > File 3
Oivn oy R Own Own
L w R R
! - W W
File 2——>{ B —>"C User B —>[File 1 >[File 2 >(File >(File 4
%l | 5
3 R %{V A\\% R
File 3——>[A > User C —>[File 1 >|File 2 >|File d |
Own Own
R w s R R
" w
File 4—> >
O 1 C Wont take up as much memory!
R R
W

Access Control list (ACL)

MONTANA
STATE UNIVERSITY

Access Control

who can do what to whom?

Process Owner
x N /A

File ——»

F1

Airw, B: A

F2

A:r, Birw, C:r

F3

B: rwx, C:rx

ACL

userspace

kernelspace

MONTANA

STATE UNIVERSITY

Unix File Modes and Permissions

Every Unix file has a set of permissions
that determine whether someone can

read, write, or run the file
[09/13/22]seed@M:~% 1s -1 ~

total 44
1s -1 ~ drwxr-xr-x 2 seed seed 4096 Nov 24 2020 Desktop
drwxr-xr-x seed seed 4096 Nov 24 2020 Documents
lgs -1 /dev drwxXr-xr-x seed seed 4096 Nov 24 2020 Downloads

drwxXrwxr-x
drwxr-xr-x
drwxXrwxr-x
drwxXr-xr-x
drwxr-xr-x
drwxXrwxr-x
drwxr-xr-x
drwxXr-xr-x

seed seed 4096 Sep 1 14:37 labo

seed seed 4096 Nov 24 2020 Music
seed seed 4096 Sep 6 15:23 os-review
seed seed 4096 Nov 24 2020 Pictures
seed seed 4096 Nov 24 2020 Public
seed seed 4096 Aug 25 13:41 shared
seed seed 4096 Nov 24 2020 Templates
seed 5eeﬂ 4096 Nov 24 2020 Videos

MONTANA
STATE UNIVERSITY

(NS NI L B NG L I I L B NS L I N\

Unix File Modes and Permissions

Every Unix file has a set of permissions
that determine whether someone can

read, write, or run the file
[09/13/22]seed@M:~% 1s -1 ~

1s -1 ~ drwxr-xr-xjJ2 seed seed 4096 Nov 24 2020 Desktop
drwXr-xr-x seed seed 4096 Nov 24 2020 Documents
lS -1 /dev drwXr-xr-x seed seed 4096 Nov 24 2020 Downloads

drwxrwxr-x
drwxr-xr-x
drwxXrwxr-x

seed seed 4096 Sep 1 14:37 labo

seed seed 4096 Nov 24 2020 Music
seed seed 4096 Sep 6 15:23 os-review
seed seed 4096 Nov 24 2020 Pictures
seed seed 4096 Nov 24 2020 Public
seed seed 4096 Aug 25 13:41 shared
seed seed 4096 Nov 24 2020 Templates
seed 5eeﬂ 4096 Nov 24 2020 Videos

MONTANA
STATE UNIVERSITY

drwxr-xXr-x

drwxr-xr-x

Permissions for the file Jdrwxrwxr-x
drwxXr-xr-x

drwxr-xXr-x

(NS NI L B NG L I I L B NS L I N\

Unix File Modes and Permissions

Every Unix file has a set of permissions
that determine whether someone can

. _ -
read, write, or run the file nerlgrouP formatio
[@9/13/22]sé2d@un:~$ ls -1 ~

1s -1 ~ drwxr-xr-x Nov 24 2020 Desktop
drwxr-xr-x Nov 24 2020 Documents

lgs -1 /dev drwxXr-xr-x Nov 24 2020 Downloads
drwXrwxr-x Sep 1 14:37 labo
drwxr-xr-x Nov 24 2020 Music
drwxXrwxr-x Sep 6 15:23 os-review
drwxXr-xr-x Nov 24 2020 Pictures
drwxr-xr-x Nov 24 2020 Public

Permissions for the file Jdrwxrwxr-x Aug 25 13:41 shared

drwxr-xr-x Nov 24 2020 Templates
drwxr-xr-x Nov 24 2020 Videos

MONTANA
STATE UNIVERSITY

Unix File Modes and Permissions

Every Unix file has a set of permissions
that determine whether someone can
read, write, or run the file

$Is | flle

-rw-r--r-- owner group date/time file

File permissions (4 parts)
[user][group]

11

Unix File Modes and Permissions

File permissions (4 parts)
- [file type][user][group][other]

M MONTANA
STATE U RSI

NIVERSITY

Unix File Modes and Permissions

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

* |s A the owner of F?

[user][group]

13

Unix File Modes and Permissions

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

* |s A the owner of F?

No, B is the owner

[user][group]

14

Unix File Modes and Permissions

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

* Is A the owner of F?
* Is A a member of F's group?

[user][group]

15

Unix File Modes and Permissions

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

* |s A the owner of F?
* Is A amember of F's group? Suppose G = {B,C,F}

Ais notin F’'s group

[user][group]

16

Unix File Modes and Permissions

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

* Is A the owner of F?
* Is A amember of F's group?
« Otherwise, what can they do?

[user][group]

17

Unix File Modes and Permissions

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

* Is A the owner of F?
* Is A amember of F's group?
« Otherwise, what can they do?

Everyone can read file F

[user][group]

18

Unix File Modes and Permissions [user][group]

Suppose user C asks to execute a file object F2. Will they be able to do so?

$Is-1F
- PWX WX WX
- WX =XI - -

-rW=-r=-----
-r'W-rw-rw-

Note:

«Group=6={A,C,K, M, Q, Z}
« Group=H={A, B, C, Q}

19

Unix File Modes and Permissions [user][group]

Suppose user C asks to execute a file object F2. Will they be able to do so?

$Is-1F
-rwxrwxrwx B H
-rwxr-xr-- D \G

-rw-r----- D H
-rw-rw-rw- B G

o*°
panas «ao®® s
C 4

Note: \ V44

« Group=G6G = {A@K, M, Q, Z}
« Group=H={A, B, C, Q}

20

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?

MONTANA
STATE UNIVERSITY

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?
Changing password!

[seed@M][~1%$ 1s -al /etc/passwd
-rw-r--r-- 1 root root 2886 Nov 24 09:12 /etc/passwd

b “NQ%F, [seed@M][~]$ 1s -al /etc/shadow
ey — "W '~~~ — 1 root shadow 1514 Nov 24 ©9:12 /etc/shadow

22

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?
Changing password!

[seed@M][~1%$ 1s -al /etc/passwd
-rw-r--r-- 1 root root 2886 Nov 24 09:12 /etc/passwd

b “NQ%F, [seed@M][~]$ 1s -al /etc/shadow
ey — "W '~~~ — 1 root shadow 1514 Nov 24 ©9:12 /etc/shadow

/etc/passwd and /etc/shadow hold encrypted passwords for the
user, in order to change our password, we will need to have access to

those directories

23

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?
Changing password!

[seed@M][~1%$ 1s -al /etc/passwd
-rw-r--r-- 1 root root 2886 Nov 24 09:12 /etc/passwd

J “NQ%F, [seed@M][~]$ 1s -al /etc/shadow
ey — "W '~~~ - 1 root shadow 1514 Nov 24 ©9:12 /etc/shadow

/etc/passwd and /etc/shadow hold encrypted passwords for the
user, in order to change our password, we will need to have access to

those directories o _ o
root (aka admin) is the only person that has write permissions!

24

Limitations of File-Based Access Control

[Programs J

Instead of having a user deal :
with sensitive actions, lets ;
have a privileged program v i
do it for us! &g [Fine-Grained Access Control] i
(Privileged Programs) |

——

\ 4

Generic Access Control
(e.g., OS syscalls)

Protected Resources

MONTANA
STATE UNIVERSITY

Types of Privileged Programs

« Daemons
» Computer program that runs in the background
» Needs to run as root or other privileged users

« Set-UID Programs
» Widely used in UNIX systems
» A normal program... but marked with a special bit

MONTANA
STATE UNIVERSITY

The superman story

Superman got tired of saving the city every day

S0, he decided to create a “super suit” that would give
normal people his powers

Problem: Not all super people are good.........

MONTANA
STATE UNIVERSITY

The superman story

Superman got tired of saving the city every day

S0, he decided to create a “super suit” that would give
normal people his powers

Problem: Not all super people are good.........

Super suit 2.0

Super suit with a dope computer
Programmed to perform a specific task
No way to deviate from the pre-programmed t3

28

The superman story

Task: Stop Bowser
1. Fly North

2. Turn left and move forward
3.Punch

Super suit 2.0

/People can hop in, and do the specific task to

stop bowser

MONTANA

STATE UNIVERSITY

The superman story

Task: Stop Bowser
1. Fly North

2. Turn left and move forward
3. Punch

The superman story

Task: Stop Bowser

1. Fly North

2. Turn left and move forward
3. Punch

The superman story

Task: Stop Bowser
1. Fly North

2. Turn left and move forward
3. Punch

The superman story

Task: Stop Bowser

1. Fly North

2. Turn left and move forward
3.Punch

The superman story

Task: Stop Bowser
1. Fly North

2. Turn left and move forward
3. Punch

This works great! People
can only do the
predetermined task and
don’t have control!

MONTANA

STATE UNIVERSITY

The superman story

Task: Stop Bowser
1. Fly North

2. Turn left and move forward
3. Punch

This works great! People
can only do the
predetermined task and
don’t have control!

Exploitable?

MONTANA

STATE UNIVERSITY

The superman story

Task: Stop Bowser

1. Fly North

2. Turn left and move forward
3.Punch

Suppose | come along,
and | see the power suit

And | decide to flip the suit around

Now what happens???

MONTANA

STATE UNIVERSITY

The superman story

Task: Stop Bowser Suppose | come along,

1. Fly North and | see the power suit
2.Turn left and move forward And | decide to flip the suit around
3. Punch

Now what happens???

MONTANA

STATE UNIVERSITY

The superman story

Task: Stop Bowser Suppose | come along,

1. Fly North and | see the power suit
2. Turn left and move forward And | decide to flip the suit around
3. Punch

Now what happens???

MONTANA
STATE UNIVERSITY

The superman story

Task: Stop Bowser Suppose | come along,

1. Fly North and | see the power suit
2.Turn left and move forward And | decide to flip the suit around
3. Punch

Now what happens???

MONTANA
STATE UNIVERSITY

The superman story

Task: Stop Bowser Suppose | come along,

1. Fly North and | see the power suit
2. Turn left and move forward

And | decide to flip the suit around
3. Punch

Now what happens???

MONTANA
STATE UNIVERSITY

The superman story

Task: Stop Bowser

Suppose | come along,
1. Fly North and | see the power suit
2. Turn left and move forward

3. Punch

And | decide to flip the suit around

| still followed the steps, but now we have a totally different outcome

My plan was to rob the bank, and | had friends waiting this whole time!

MONTANA
STATE UNIVERSITY

Set-UID In a Nutshell

Set-UID allows a user to run a program with the program owner’s privilege
« User runs a program w/ temporarily elevated privileges

Created to deal with inflexibilities of UNIX access control

Example: The passwd program

[seed@M][~]$ 1s -al /usr/bin/passwd

-rwsr-xr-x 1 root root 68208 May 28 2020 /usr/bin/passwd

42

Set-UID In a Nutshell

Set-UID allows a user to run a program with the program owner’s privilege
« User runs a program w/ temporarily elevated privileges

Every process has two User IDs
« Real UID (RUID)- Identifies the owner of the process
« Effective UID (EUID)- Identifies current privilege of the process

When a normal program is executed
« RUID == EUID

Wh Set-UID , d If a program owner ==root,
ona e brogram s execute The program runs with root privileges
 RUID = EUID

« EUID == ID of the program’s owner

4

3

Set-UID In a Nutshell

Set-UID allows a user to run a program with the program owner’s privilege
« User runs a program w/ temporarily elevated privileges

Every process has two User IDs
« Real UID (RUID)- Identifies the owner of the process
« Effective UID (EUID)- Identifies current privilege of the process

When a normal program is executed
« RUID == EUID

Wh Set-UID , d If a program owner ==root,
ona e brogram s execute The program runs with root privileges
 RUID = EUID

« EUID == ID of the program’s owner

4

4

Set-UID Program Demo

[seed@VM][~]S cp /bin/cat ./mycat
[seed@VM][’ }S sudo chown root mycat Change the owner of a file to root

E kf‘/{‘]\/ ~1S Is -al mycat
-FWXI-Xr-X 1 root seed 43416 Jan 25 21:15 mycat

Set-UID Program Demo

[seed@VM][~]S cp /bin/cat ./mycat

[seed@VM][~]S sudo chown root mycat Change the owner of a file to root
[se r(w\/ M][~]S Is -al mycat

-rwxr-xr-x 1 root seed 43416 Jan 25 21:15 mycat

[seed@VM][~]S mycat /etc/shadow
Running to program (normally)

mycat: /etc/shadow. Permission denied

Set-UID Program Demo

[seed@VM][~]S cp /bin/cat ./mycat

[seed@VM][~]S sudo chown root mycat Change the owner of a file to root
[se ,me\/ M][~]S Is -al mycat

-rwxr-xr-x 1 root seed 43416 Jan 25 21:15 mycat

[seed@VM][~]S mycat /etc/shadow
Running to program (normally)

mycat: /etc/shadow: Permission denied

[seed@VM][~]S sudo chmod 4755 mycat Enable the Set-UID bit

[seed@VM][~]S Is -al mycat

-rwsr-xr-x 1 root seed 43416 Jan 25 21:15 mycat

[seed@VM][~]$ mycat /etc/shadow

root:!: 18590 0:99999:7::- We have successfully made a Set-UID program!
daemon:*:18474:0:99999:7:::

Announcements

Lab 1 Due TOMORROW 9/16 @ 11:59 PM
 Shouldn’t be too bad

Lab 2 (SET-UID) is posted. due ???
* You will be able to complete it after today

MONTANA
STATE UNIVERSITY

Set-UID

Demo

A Set-UID program is just like any other program, except that is has a special bit sit

[09/15/22]seed@VM:~/1ab2$ cp /usr/bin/id ./myid Steps for Creating a
[09/15/22]seed@VM:~/1ab2%$ chown root myid .
chown: changing ownership of 'myid': Operation not permitted set-uid program
[09/15/22]seed@VM:~/1ab2% sudo chown root myid
[09/15/22]seed@VM:~/1ab2% /myid -
bash: /myid: No such file or directory 1. Chang_e file
[09/15/22]seed@VM:~/1ab23 ./myid OWI’leI’ShIp to root
uid=1000(seed) gid=1000(seed) groups=1000(seed),4(adm),24(cdrom),27(sudo),30(dip
),46(plugdev),120(1lpadmin),131(1xd),132(sambashare),136(docker) (C:le)VVIl)

il

If the set-uidbit is enabled, the EUID is set according to the file owner _
2. Enable to Set-uid

[09/15/22] seed@VM:~/1ab2$ chmod 4755 myid .

chmod: changing permissions of 'myid': Operation not permitted bit (CZIlITlC)(j)
[09/15/22] seed@VM:~/1ab2%$ sudo chmod 4755 myidjkr

[09/15/22] seed@VM:~/1ab2% ./myid

uid=1000(seed) gid=1000(seed) euid=0(root) groups=1000(seed),4(adm),24(cdrom),b 27
(sudo),3@(dip),46(plugdev)612@(lpadmin),131(1xd),132(sambashare),136(d0cker)

4 = setuid bit

Access control decisions made based on EUID, not RUID ! 4735 755 = owner riw/x,
group/others can r/w

49

So.... Is Set-UID secure?

« Allows normal users to escalate privileges
» This is different from directly giving escalated privileges (such as sudo)
> Restricted behavior (think power sult 2.0)

Are there any programs that should not be Set-UID programs?

MONTANA
STATE UNIVERSITY

So.... Is Set-UID secure?

« Allows normal users to escalate privileges

> This is different from directly giving escalated privileges (such as sudo)
> Restricted behavior (think power sulit 2.0)

Are there any programs that should not be Set-UID programs?

~ [09/15/22] seed@VM:~/1Lab2%$ sudo /bin/sh
cat /etc/shadow
root:!:18590:0:99999:7:::
- daemon:*:18474:0:99999:7:::
/bin/sh bin:*:18474:0:99999:7: : :
sys:*¥:18474:0:99999:7:::

MONTANA
STATE UNIVERSITY

Attack Surface of (Set-UID) Programs

An attack surface is the aggregation of all exposed entry
points/weaknesses into the system to gain unauthorized access

Attack Vectors ettt el NETWORK - ------o-mmemmmmemonee-
- |
Vulnerability !
| Weakness
N 1
: Attack surface Endpaints Sarvers

MONTANA

STATE UNIVERSITY

Attack Surface of (Set-UID) Programs

user inputs (direct inputs)

e.g., buffer overflow

N Z
' NS)
4
-—

_|\> environment variables

— (hidden inputs)
system inputs that can be set-UID programs e.g., PATH modification

controlled by users
e.g., race conditions

non-privileged process
controlled by user

e.g., capability leaking

MONTANA

STATE UNIVERSITY

Attack Surface of (Set-UID) Programs

user inputs (direct inputs) ﬂ

e.g., buffer overflow

N Z
' NS)
4
e X

_|\> environment variables

— (hidden inputs)
system inputs that can be set-UID programs e.g., PATH modification

controlled by users
e.g., race conditions

non-privileged process
controlled by user

e.g., capability leaking

MONTANA

STATE UNIVERSITY

Invoking Programs -

from within programs \
-

M MONTANA
STA RS

TE UNIVERSITY

Preliminary setup for attack

/bin/sh is an alias for
/bin/dash. /bin/dash has
countermeasures for some of our
attacks

We will need to run a command to set the unsafe version of shell

$ sudo 1ln -sf /bin/zsh /bin/sh
$ sudo 1n -sf /bin/dash /bin/sh

Invoking Program with a program

We can invoke external commands/programs from INSIDE another program

* system()
* exec()-family

MONTANA
STATE UNIVERSITY

system ()

usage: system (command)

e Spawns a new process that executes the shell command that is
specified in command

#include <stdlib.h>
#include <stdio.h>

-int main()

A
printf("I am going to start the calculator program! \n");
system("/bin/bc™);

g ’l_’_/_

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

* Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

« We will create a privileged program that will let the auditor view the content some file

./audit company data.csv ./audit ../lab0/solution.docx

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[])

{
char *v[3];
it (arge < 2) {
printf("Audit! Please type a file name.\n");
return 1;
} The command line argument
v[0] = “/bin/cat’; v[1] = argv[1]; v[2] = 0; (file path) is appended to the
char *command = malloc(strlen(v[0]) + strlen(v[1]) + 2); string ‘/bin/cat”
sprintf(command, "S%s %s", v[0], v[1l]);
/*
* Use only one of the following (comment out the other):
ka7
Spawns a New process that executes
system(command) ;
01 v, 9); i
RS Y /bin/cat [FILE PATH]
return 0;
}

ex. /bin/cat my file.txt

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

* Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

« We will create a privileged program that will let the auditor view the content some file

./audit company data.csv ./audit ../lab0/solution.docx

v

Command that
is executed: /bin/cat company data.csv /bin/cat ../lab0/solution.docx

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

* Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

« We will create a privileged program that will let the auditor view the content some file

./audit company data.csv ./audit ../lab0/solution.docx

v

Command that
is executed: /bin/cat company data.csv /bin/cat ../lab0/solution.docx

We have some control over the behavior of the program

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

* Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

« We will create a privileged program that will let the auditor view the content some file

./audit company data.csv ./audit ../lab0/solution.docx

v

Command that
is executed: /bin/cat company data.csv /bin/cat ../lab0/solution.docx

We have some control over the behavior of the program

If this is a Set-UID program.... things could get interesting

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[])

{
char *v[3];
if (arge < 2) { System is a very unsafe function
printf("Audit! Please type a file name.\n");
) ey 1; What type of input could we provide to
exploit this?
v[0] = "/bin/cat"; v[1l] = argv[l]; v[2] = 0;
char *command = malloc(strlen(v[0]) + strlen(v[l]) + 2);
sprintf(command, "S%s %s", v[0], v[1l]);
/*
* Use only one of the following (comment out the other):
ka7
system(command) ;
//execve(v[0], v, 0);
return 0;
}

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[])

{
char *v[3];
if (arge < 2) { System is a very unsafe function
printf("Audit! Please type a file name.\n");
) ey 1; What type of input could we provide to
exploit this?
v[0] = "/bin/cat"; v[1l] = argv[l]; v[2] = 0;
char *command = malloc(strlen(v[0]) + strlen(v[l]) + 2); -t . .
/*
* Use only one of the following (comment out the other):
ka7
system(command) ;
//execve(v[0], v, 0);
return 0;
}

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>

int main(int argc, char *argv[])

{
char *v[3];
if (arge < 2) { System is a very unsafe function
printf("Audit! Please type a file name.\n");
) ey 1; What type of input could we provide to
exploit this?
v[0] = "/bin/cat"; v[1l] = argv[l]; v[2] = 0;
char *command = malloc(strlen(v[0]) + strlen(v[l]) + 2); -t . .
/*
* Use only one of the following (comment out the other):
ka7
system(command) ;
Q . . @ - - - . -
R M ./audit “my info.txt; /bin/sh”
return 0; -
}

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

./audit “my info.txt; /bin/sh”

!

system(/bin/cat “my info.txt; /bin/sh”)

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

./audit “my info.txt; /bin/sh”

!

system(/bin/cat “my info.txt; /bin/sh”)

[09/15/22]seed@VM:~/1ab2% ./audit "my info.txt; /bin/sh”
I have some information
#

System() interprets this as two different commands

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

./audit “my info.txt; /bin/sh”

!

system(/bin/cat my info.txt; /bin/sh)

[09/15/22]seed@VM:~/1ab2% ./audit "my info.txt; /bin/sh”
I have some information
#

System() interprets this as two different commands

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

./audit “my info.txt; /bin/sh”

!

system(/bin/cat my info.txt; /bin/sh)

[09/15/22]seed@VM:~/1ab2$./audit "my_info.txt; /bin/sh"
I have some information
whoaml
-;Dzst Jetc/shadou Because this is a Set-UID
-/ et o program.
Sﬂﬂt- ! 1—5?_3373393339;7 . When owner = root, the shell
b?ewgr?iaaim-@-égégg-?- Phr will be run with root
1n:*: Y. e permissions

MONTANA
STATE UNIVERSITY

audit.c usage: system (command)

./audit “my info.txt; /bin/sh”

!

system(/bin/cat my info.txt; /bin/sh)

[09/15/22]seed@VM:~/1ab2$./audit "my_info.txt; /bin/sh"
I have some information
whoaml
-;Dzzt Jetc/shadou Because this is a Set-UID
-/ et o program.
Sﬂﬂt- ! 1—3?_3373393339;7 . When owner = root, the shell
b?ewgr?iaim-e-égégg-?- Phr will be run with root
1n:*: Y. e permissions

We have gained aceess into the system!

MONTANA
STATE UNIVERSITY

A safer way to invoke programs

int execve (const char *pathname, char *const argv[], char *const envpl[]):

execve () executes the program
referred to by pathname. argv[] IS
the command line arguments for the
command

MONTANA
STATE UNIVERSITY

A safer way to invoke programs

int execve (const char *pathname, char *const argv[], char *const envpl[]):

execve () executes the program
referred to by pathname. argv[] IS
the command line arguments for the
command

MONTANA
STATE UNIVERSITY

A safer way to invoke programs

int execve (const char *pathname, char *const argv[], char *const envpl[]):

execve () executes the program
referred to by pathname. argv[] IS
the command line arguments for the
command

Using execve () instead of system ()

[09/15/22] seed@VM: ~/1ab2$./audit "aa:/bin/sh"
/bin/cat: 'aa;/bin/sh': No such file or directory

Fail!

MONTANA
STATE UNIVERSITY

A safer way to invoke programs

int execve (const char *pathname, char *const argv[], char *const envpl[]):

execve () executes the program
referred to by pathname. argv[] IS
the command line arguments for the

execve (“/bin/cat”, [Maa;/bin/sh”])

d

command
/bin/cat “aa;/bin/sh”
Treated as an entire argument to the command
Using execve () instead of system () Eaill

[09/15/22] seed@VM: ~/1ab2$./audit "aa:/bin/sh"
/bin/cat: 'aa;/bin/sh': No such file or directory

Fail!

MONTANA
STATE UNIVERSITY

What makes this unsafe? Why was this program exploitable?

MONTANA
RSI

STATE UNIVERSITY

Security Principle #1

Principle of Isolation

There needs to be a clear separation of data and code

If user input needs to be treated as data, NONE of the contents should be treated as code

MONTANA
STATE UNIVERSITY

The ability (and risks) of invoking external commands is not limited to C

Python has a system call...
Perl has open ()
PHP has system

MONTANA
STATE UNIVERSITY

v

user inputs (direct inputs)

e.g., buffer overflow

environment variables
(hidden inputs)

e.g., PATH modification

N

___ 4
system inputs that can be set-UID programs

controlled by users

e.g., race conditions

non-privileged process
controlled by user

e.g., capability leaking

MONTANA

STATE UNIVERSITY

Environment variable are a set of dynamic
named values that affect the way a running
process will behave (ey-vaie pairs)

MONTANA
STATE UNIVERSITY

Environment variable are a set of dynamic
named values that affect the way a running
process will behave (ey-vaie pairs)

Example: The PATH variable
* We use command such as 1s and passwd

We could be in any directory; how does it know to run /bin/ls ?

MONTANA
STATE UNIVERSITY

Environment variable are a set of dynamic
named values that affect the way a running
process will behave (ey-vaie pairs)

Example: The PATH variable
* We use command such as 1s and passwd

We could be in any directory; how does it know to run /bin/Is ?

If the full path is not provided, the shell process will use the PATH env. Variable to search for it!

|PATH=fusrflocalfsbin:/usrflocal/bin:/usr{sbin:/usr{bin:fsbin:/bin:fusrfgames:fusrflocalfgames:/snap/bin:.

82

Environment variable are a set of dynamic
named values that affect the way a running
process will behave (ey-vaie pairs)

Example: The PATH variable
* We use command such as 1s and passwd

We could be in any directory; how does it know to run /bin/Is ?

If the full path is not provided, the shell process will use the PATH env. Variable to search for it!

|PATH=fusrflocalfsbin:/usrflocal/bin:/usr{sbin:/usr{bin:fsbin:/bin:fusrfgames:fusrflocalfgames:/snap/bin:.

You can run the env command to print out all the environment variables

N o

Where do Env Variables come from?

#include <stdio.h>

Processes can get environment variables in SR T
one of two ways:

extern char %k environ;

void main(int argc, charx argv[], charx envpl[])

fork() = the child process {
inherits itS parent proceSS,S int 1 = @; charx v[2]; charx newenv[3];

if (argc < 2) return;

environment variables.
exec() 9 the memory Space |S // Construct the argument array

. v[@] = "/usr/bin/env"; v[1] = NULL;
overwritten, and all old

envn‘onment Vanables are IOSt // Construct the environment variable array
. . newenv|[0] = "AAA=aaa"; newenv[1l] = "BBB=bbb"; newenv[2] = NULL;

However, execve() can explicitly
pass environment variables from v tehfargyiil 1)

case 'l': // Passing no environment variable.
one process to another axecva(viol, v, NULL):

case '2': // Passing a new set of environment variables

execve(v[@], v, newenv);

case '3': // Passing all the environment variables.

. /passenv 1 execve(v[@], v, environ);

default:

. /paSSGnV 2 execve(v[0], v, NULL);

./passenv 3

Where do Env Variables come from?

parent

child

M

MONTANA

STATE UNIVERSITY

Attacks with Env Variables

» Hidden usage of
environment variable is part
of what makes them so
dangerous

« Users can also modify
environment variables...

« If Set-UID programs make
use of environment
variables, they become part
of the attack surface

o
RN

MONTANA

STATE UNIVERSITY

Attacks with Env Variables

« A program may invoke an external program (e.g., via system()) to do some work

« PATH contains a list of directories to search for executable programs

« If a program is invoked without using the absolute path (e.g., system(“ls”), the
PATH env. variable is used to search for the program

« PATH can be set by users....

Any ideas???

MONTANA
STATE UNIVERSITY

Attacks with Env Variables

« A program may invoke an external program (e.g., via system()) to do some work

« PATH contains a list of directories to search for executable programs

« If a program is invoked without using the absolute path (e.g., system(“ls”), the
PATH env. variable is used to search for the program

« PATH can be set by users....

Task 6inLab 2 ©

Any ideas???

MONTANA
STATE UNIVERSITY

Attacks with Env Variables

[seed@VM][~]$ sudo 1ln -sf /bin/zsh /bin/sh # set shell to zsh (no countermeasure)

(seed@VM]|[~]$ sudo 1n -sf /bin/dash /bin/sh # set shell to dash (has countermeasure)

Compile and set as Set-UID program

| seed@VM][~]$ gcc -0 1s vul 1s vul.c
| seed@VM][~]$ sudo chown root 1ls vul
[seed@VM] [~ sudo chmod 4755 1s vul
|seed@VM][~]$ 1s -al 1s vul

Q: How to get 1ls vul to run attacker code for 1ls instead of /bin/ls program?!?!

[seed@VM][~]$ export PATH=/home/seed:$PATH # set PATH to look in seed’s home dir first...
[seed@VM][~]$% echo $PATH

...and now...

export is used to define new variables

89

« Linking finds the external library code referenced in a
program

« Static linking — linker combines program code/external code
into final executable

= Env.

Variables
(e.g., LD_PRELOAD)

 Dynamic Linking- linker uses env. Variables to locate
external dependencies (increase the attack surface)

How does the linker know where to look?

MONTANA

STATE UNIVERSITY

« LD PRELOAD contains a list of shared libraries to search first

* Provides precedent over standard function calls (malloc, free, etc)
 If functions are not found, it will consult the location specified in LD LIBRARY PATH

« We can set both values, which gives us an opportunity for users to influence linking

MONTANA
STATE UNIVERSITY

LD PRELOAD contains a list of shared libraries to search first

Provides precedent over standard function calls (malloc, free, etc)

If functions are not found, it will consult the location specified in LD LIBRARY PATH

We can set both values, which gives us an opportunity for users to influence linking

mylib.c

include <stdio.h>

include <unistd.h>

void sleep (int s)

int main()
I :
L

printf ("I am not sleeping!\n™};

sleep(1);

1
I

return 0;
Write our own sleep

function within out mylib.c
program

This will run the standard libc sleep

92

LD PRELOAD contains a list of shared libraries to search first

Provides precedent over standard function calls (malloc, free, etc)

If functions are not found, it will consult the location specified in LD LIBRARY PATH

We can set both values, which gives us an opportunity for users to influence linking

mylib.c

include <stdio.h>

Add function to shared library

include <unistd.h>

aedl ellezy (50E < $ gcc -fPIC -g -c mylib.c

int main()

$ gcc -shared -o libmylib.so.1.8.1 mylib.o -lc

I
L

I
L

v

printf ("I am not sleeping!\n™};

sleep(1);

1
I

return 0;
Write our own sleep

function within out mylib.c
program

This will run the standard libc sleep

93

include <unistd.h>

int main()

LD PRELOAD contains a list of shared libraries to search first

Provides precedent over standard function calls (malloc, free, etc)
If functions are not found, it will consult the location specified in LD LIBRARY PATH

We can set both values, which gives us an opportunity for users to influence linking

mylib.c

include <stdio.h>

Add function to shared library

aedl ellezy (50E < $ gcc -fPIC -g -c mylib.c

7 $ gcc -shared -o libmylib.so.1.8.1 mylib.o -lc

i e

I
L

sleep(1);

return 0;

This will run the standard libc sleep

v

printf ("I am not sleeping!\n™};

1
I

$ export LD PRELOAD=./libmylib.so.1.0.1

Write our own sleep))
function within out mylib.c Set variable to look at our library, not default one

program

94

include <unistd.h>

int main()

LD PRELOAD contains a list of shared libraries to search first

Provides precedent over standard function calls (malloc, free, etc)
If functions are not found, it will consult the location specified in LD LIBRARY PATH

We can set both values, which gives us an opportunity for users to influence linking

mylib.c

include <stdio.h>

Add function to shared library

aedl ellezy (50E < $ gcc -fPIC -g -c mylib.c

7 $ gcc -shared -o libmylib.so.1.8.1 mylib.o -lc

i e

I
L

sleep(1);

return ©;

This will run the standard libc sleep

v

printf ("I am not sleeping!\n™};

1
I

$ export LD PRELOAD=./libmylib.so.1.0.1

Write our own sleep))
function within out mylib.c Set variable to look at our library, not default one

program
Imyprog.c ?7?

95

include <unistd.h>

int main()

LD PRELOAD contains a list of shared libraries to search first

Provides precedent over standard function calls (malloc, free, etc)
If functions are not found, it will consult the location specified in LD LIBRARY PATH

We can set both values, which gives us an opportunity for users to influence linking

mylib.c

include <stdio.h>

Add function to shared library

aedl ellezy (50E < $ gcc -fPIC -g -c mylib.c

7 $ gcc -shared -o libmylib.so.1.8.1 mylib.o -lc

i e

I
L

sleep(1);

return ©;

This will run the standard libc sleep

v

printf ("I am not sleeping!\n™};

1
I

$ export LD PRELOAD=./libmylib.so.1.0.1

Write our own sleep))
function within out mylib.c Set variable to look at our library, not default one

program
Imyprog.c ?7?

96

#LllCLUUE STLONLL.T”

* Afte!.lﬂg'task, elevated privileges are no lLonger needed;
* it 1is time to relinguish these privileges!

int main()
{ * NOTE: getuid() returns the real UID (RUID)
int fd; *
setuid(getuid());
/:it

We eventually fork and
create a new process

if (fork()) { /* parent process */
close (fd);
exit(@);

} else { /* child process */

* Assume that /etc/zzz is an important system file,
* gnd it is owned by root with permission 6644.
* Before running this program, you should create
* the file /etc/zzz first.
*/
fd = open("/etc/zzz", O_RDWR | O_APPEND);
if (fd == -1) {
printf("Cannot open /etc/zzz\n");
exit(9);

/*
* Now, assume that the child process is compromised, and that
* malicious attackers have injected the following statements into this process
*/

write (fd, "Malicious Data\n", 15);

// Simulate the tasks conducted by the program close (fd);

sleep(1);

Capability leaking occurs when some process gains escalated
privileges, but does not clean up the privileges when downgraded

MONTANA
STATE UNIVERSITY

#LllCLUUE STLONLL.T”

* Aftewtask, elevated privileges are no lLonger needed;

int main() * it 1is time to relinguish these privileges!
{ _ _ * NOTE: getuid() returns the real UID (RUID)
int fd; fd is defined *y
before the fork() setuid(getuid());

/:it

* Assume that /etc/zzz 1is an important system file, if (fork()) { /* parent process */ We eVentua”y fork and
* gnd it is owned by root with permission ©644. close (fd); create a new process

* Before running this program, you should create exit(e);

* the file /etc/zzz first. } else { /* child process */

*/

fd = open("/etc/zzz", O_RDWR | O_APPEND);

/#’-
if (fd == -1) {

S . PR * Now, assume that the child process is compromised, and that
printf(*Cannot open /etc/zzz\n"); * malicious attackers have injected the following statements into this process

exit(0); letc/zzz is only */

writeable by root write (fd, "Malicious Data\n", 15);
close (fd);

¥

// Simulate the tasks conducted by the program
sleep(1); }

Capability leaking occurs when some process gains escalated
privileges, but does not clean up the privileges when downgraded

MONTANA
STATE UNIVERSITY

#LllCLUUE STLONLL.T”

* Aftewtask, elevated privileges are no lLonger needed;
int main() * it is time to relinquish these privileges!
* NOTE: getuid() returns the real UID (RUID)

{ . .
int £d; fd is defined */ Drop privileges
before the fork() setuid(getuid());

(/it
* Assume that /etc/zzz is an important system file, if (fork()) { /* parent process */ We eVentua”y fork and
* and it is owned by root with permission €644. close (fd); create a new process
* Before running this program, you should create exit(e);
* the file /etc/zzz first. } else { /* child process */

*/
fd = open("/etc/zzz", O_RDWR | O_APPEND);

/*
if (fd == -1) {

S . PR * Now, assume that the child process is compromised, and that
printf(*Cannot open /etc/zzz\n"); * malicious attackers have injected the following statements into this process

exit(0); letc/zzz is only */

writeable by root write (fd, "Malicious Data\n", 15);
close (fd);

¥

// Simulate the tasks conducted by the program
sleep(1); }

Capability leaking occurs when some process gains escalated
privileges, but does not clean up the privileges when downgraded

MONTANA
STATE UNIVERSITY

#LllCLUUE STLONLL.T”

int main()
{ int fd; fd is defined
before the fork()
,/ir

* Assume that /etc/zzz is an important system file,
* and it is owned by root with permission 6644.
* Before running this program, you should create
* the file /etc/zzz first.
*/
fd = open("/etc/zzz", O_RDWR | O_APPEND);
if (fd == -1) {
printf("Cannot open /etc/zzz\n");

exit(e); letc/zzz is only
writeable by root

// Simulate the tasks conducted by the program
sleep(1);

¥

* Afte:.lﬂg'task, elevated privileges are no lLonger needed;
* it is time to relinquish these privileges!
* NOTE: getuid() returns the real UID (RUID)

K4 Drop privileges
setuid(getuid()); PP 9

We eventually fork and
create a new process

if (fork()) { /* parent process */
close (fd); Close file in

exit(@); parent process
} else { /* child process */

/*
* Now, assume that the child process is compromised, and that
* malicious attackers have injected the following statements into this process
*/

write (fd, "Malicious Data\n", 15);

close (fd);

Capability leaking occurs when some process gains escalated
privileges, but does not clean up the privileges when downgraded

MONTANA
STATE UNIVERSITY

#LllCLUUE STLONLL.T”

int main()
{ int d; fd is defined
before the fork()
;,»’*

* Assume that /etc/zzz is an important system file,
* and it is owned by root with permission 6644.
* Before running this program, you should create
* the file /etc/zzz first.
*/
fd = open("/etc/zzz", O_RDWR | O_APPEND);
if (fd == -1) {
printf("Cannot open /etc/zzz\n");

exit(e); letc/zzz is only
writeable by root

// Simulate the tasks conducted by the program
sleep(1);

¥

Capability leaking occurs when
some process gains escalated

privileges, but does not clean up the

privileges when downgraded

* Aftewtasfe, elevated privileges are no lLonger needed;
* it is time to relinquish these privileges!
* NOTE: getuid() returns the real UID (RUID)

"/ Drop privileges
setuid(getuid()); PP J

We eventually fork and
create a new process

if (fork()) { /* parent process */
close (fd); Close file in

exit(e); parent process
} else { /* child process */

/*
* Now, assume that the child process is compromised, and that
* malicious attackers have injected the following statements into this process

*/
write (fd, "Malicious Data\n", 15); _
close (fd);

} The file descriptor is still open in
the child process!

[09/15/22]seed@VM:~/1ab2% sudo touch /etc/zzz
[09/15/22]seed@VM:~/1ab2$./cap leak
[09/15/22]seed@VM:~/1ab2% sudo cat /etc/zzz
Malicious Data

MONTANA
STATE UNIVERSITY

Security Principle #2

Principle of Least Privilege

Subjects and Programs should be given only the
privileges needed to complete their task

Disable privileges when they aren’t needed

(2

102

Lab 2

MONTANA

STATE UNIVERSITY

M

