
CSCI 476: Computer Security
Lecture 5: Set-UID and Environment Variables

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1*all images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Announcements

Lab 1 Due FRIDAY 9/16 @ 11:59 PM

• Shouldn’t be too bad

Note taker still needed

3

How would you protect your computer and its resources?

4

Access Control

who can do what to whom?

users/groups

what is their identity?

permissions (read/write/execute)

Ok, I know the who– what are you permitted to do?

Objects

Usually things on a filesystem

5

Access Control who can do what to whom?

Access Control Matrix

What are some issues with this?

6

Access Control who can do what to whom?

Access Control list (ACL)

Wont take up as much memory!

7

Access Control who can do what to whom?

8

Unix File Modes and Permissions

Every Unix file has a set of permissions

that determine whether someone can

read, write, or run the file

ls –l ~

ls –l /dev

9

Unix File Modes and Permissions

Every Unix file has a set of permissions

that determine whether someone can

read, write, or run the file

ls –l ~

ls –l /dev

Permissions for the file

10

Unix File Modes and Permissions

Every Unix file has a set of permissions

that determine whether someone can

read, write, or run the file

ls –l ~

ls –l /dev

Permissions for the file

11

Unix File Modes and Permissions

Every Unix file has a set of permissions

that determine whether someone can

read, write, or run the file

File permissions (4 parts)

• [file type][user][group][other]

12

Unix File Modes and Permissions

File permissions (4 parts)

• [file type][user][group][other]

13

Unix File Modes and Permissions • [file type][user][group][other]

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

• Is A the owner of F?

14

Unix File Modes and Permissions • [file type][user][group][other]

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

• Is A the owner of F?

No, B is the owner

15

Unix File Modes and Permissions • [file type][user][group][other]

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

• Is A the owner of F?

• Is A a member of F’s group?

16

Unix File Modes and Permissions • [file type][user][group][other]

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

• Is A the owner of F?

• Is A a member of F’s group?

A is not in F’s group

Suppose G = {B,C,F}

17

Unix File Modes and Permissions • [file type][user][group][other]

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

• Is A the owner of F?

• Is A a member of F’s group?

• Otherwise, what can they do?

18

Unix File Modes and Permissions • [file type][user][group][other]

Suppose you have the following file:

If user A asks to perform some operation O on a file object F, the OS checks:

• Is A the owner of F?

• Is A a member of F’s group?

• Otherwise, what can they do?

Everyone can read file F

19

Unix File Modes and Permissions • [file type][user][group][other]

20

Unix File Modes and Permissions • [file type][user][group][other]

21

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?

22

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?

Changing password!

23

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?

Changing password!

/etc/passwd and /etc/shadow hold encrypted passwords for the

user, in order to change our password, we will need to have access to

those directories

24

Limitations of File-Based Access Control

When would a non-privilege user require more power/permissions?

Changing password!

/etc/passwd and /etc/shadow hold encrypted passwords for the

user, in order to change our password, we will need to have access to

those directories
root (aka admin) is the only person that has write permissions!

25

Limitations of File-Based Access Control

Instead of having a user deal

with sensitive actions, lets

have a privileged program

do it for us!

26

Types of Privileged Programs

• Daemons

➢ Computer program that runs in the background

➢ Needs to run as root or other privileged users

• Set-UID Programs

➢ Widely used in UNIX systems

➢ A normal program… but marked with a special bit

27

The superman story

Superman got tired of saving the city every day

So, he decided to create a “super suit” that would give

normal people his powers

Problem: Not all super people are good………

28

The superman story

Superman got tired of saving the city every day

So, he decided to create a “super suit” that would give

normal people his powers

Problem: Not all super people are good………

Super suit with a dope computer

Programmed to perform a specific task

No way to deviate from the pre-programmed task

29

The superman story

Super suit 2.0

People can hop in, and do the specific task to

stop bowser

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch

30

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch

31

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch

32

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch

33

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch

34

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch

This works great! People

can only do the

predetermined task and

don’t have control!

35

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch

This works great! People

can only do the

predetermined task and

don’t have control!

Exploitable?

36

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch
And I decide to flip the suit around

Suppose I come along,

and I see the power suit

Now what happens???

37

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch
And I decide to flip the suit around

Suppose I come along,

and I see the power suit

Now what happens???

38

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch
And I decide to flip the suit around

Suppose I come along,

and I see the power suit

Now what happens???

39

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch
And I decide to flip the suit around

Suppose I come along,

and I see the power suit

Now what happens???

40

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch
And I decide to flip the suit around

Suppose I come along,

and I see the power suit

Now what happens???

41

The superman story

Task: Stop Bowser

1.Fly North

2.Turn left and move forward

3.Punch
And I decide to flip the suit around

Suppose I come along,

and I see the power suit

I still followed the steps, but now we have a totally different outcome

My plan was to rob the bank, and I had friends waiting this whole time!

42

Set-UID In a Nutshell

Set-UID allows a user to run a program with the program owner’s privilege

• User runs a program w/ temporarily elevated privileges

Created to deal with inflexibilities of UNIX access control

Example: The passwd program

43

Set-UID In a Nutshell

Set-UID allows a user to run a program with the program owner’s privilege

• User runs a program w/ temporarily elevated privileges

Every process has two User IDs

• Real UID (RUID)– Identifies the owner of the process

• Effective UID (EUID)– Identifies current privilege of the process

When a normal program is executed

• RUID == EUID

When a Set-UID program is executed

• RUID != EUID

• EUID == ID of the program’s owner

If a program owner == root,

The program runs with root privileges

44

Set-UID In a Nutshell

Set-UID allows a user to run a program with the program owner’s privilege

• User runs a program w/ temporarily elevated privileges

Every process has two User IDs

• Real UID (RUID)– Identifies the owner of the process

• Effective UID (EUID)– Identifies current privilege of the process

When a normal program is executed

• RUID == EUID

When a Set-UID program is executed

• RUID != EUID

• EUID == ID of the program’s owner

If a program owner == root,

The program runs with root privileges

45

Set-UID Program Demo

Change the owner of a file to root

46

Set-UID Program Demo

Change the owner of a file to root

Running to program (normally)

47

Set-UID Program Demo

Change the owner of a file to root

Running to program (normally)

Enable the Set-UID bit

We have successfully made a Set-UID program!

48

Announcements

Lab 1 Due TOMORROW 9/16 @ 11:59 PM

• Shouldn’t be too bad

Lab 2 (SET-UID) is posted. due ???

• You will be able to complete it after today

49

Set-UID

A Set-UID program is just like any other program, except that is has a special bit sit

If the set-uidbit is enabled, the EUID is set according to the file owner

Steps for creating a

set-uid program

1. Change file

ownership to root

(chown)

2. Enable to Set-uid

bit (chmod)

Demo

Access control decisions made based on EUID, not RUID ! 4755

4 = setuid bit

755 = owner r/w/x,

group/others can r/w

50

So…. Is Set-UID secure?

• Allows normal users to escalate privileges

➢ This is different from directly giving escalated privileges (such as sudo)

➢ Restricted behavior (think)

Are there any programs that should not be Set-UID programs?

51

So…. Is Set-UID secure?

• Allows normal users to escalate privileges

➢ This is different from directly giving escalated privileges (such as sudo)

➢ Restricted behavior (think)

Are there any programs that should not be Set-UID programs?

/bin/sh

52

Attack Surface of (Set-UID) Programs

An attack surface is the aggregation of all exposed entry

points/weaknesses into the system to gain unauthorized access

53

Attack Surface of (Set-UID) Programs

54

Attack Surface of (Set-UID) Programs

55

Invoking Programs

from within programs

56

/bin/sh is an alias for

/bin/dash. /bin/dash has

countermeasures for some of our

attacks

We will need to run a command to set the unsafe version of shell

Preliminary setup for attack

57

Invoking Program with a program

We can invoke external commands/programs from INSIDE another program

• system()

• exec()-family

58

System()

usage: system(command)

• Spawns a new process that executes the shell command that is
specified in command

59

audit.c usage: system(command)

• Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

• We will create a privileged program that will let the auditor view the content some file

./audit company_data.csv ./audit ../lab0/solution.docx

60

audit.c usage: system(command)

The command line argument

(file path) is appended to the

string “/bin/cat”

Spawns a new process that executes

/bin/cat [FILE_PATH]

ex. /bin/cat my_file.txt

61

audit.c usage: system(command)

• Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

• We will create a privileged program that will let the auditor view the content some file

./audit company_data.csv ./audit ../lab0/solution.docx

/bin/cat ../lab0/solution.docx
Command that

is executed: /bin/cat company_data.csv

62

audit.c usage: system(command)

• Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

• We will create a privileged program that will let the auditor view the content some file

./audit company_data.csv ./audit ../lab0/solution.docx

/bin/cat ../lab0/solution.docx
Command that

is executed: /bin/cat company_data.csv

We have some control over the behavior of the program

63

audit.c usage: system(command)

• Suppose you are preparing for an audit. An auditor may need the
access to view certain files.

• We will create a privileged program that will let the auditor view the content some file

./audit company_data.csv ./audit ../lab0/solution.docx

/bin/cat ../lab0/solution.docx
Command that

is executed: /bin/cat company_data.csv

We have some control over the behavior of the program

If this is a Set-UID program…. things could get interesting

64

audit.c usage: system(command)

System is a very unsafe function

What type of input could we provide to

exploit this?

65

audit.c usage: system(command)

System is a very unsafe function

What type of input could we provide to

exploit this?

hint: the string passed into system

can include multiple commands

66

audit.c usage: system(command)

System is a very unsafe function

What type of input could we provide to

exploit this?

hint: the string passed into system

can include multiple commands

./audit “my_info.txt; /bin/sh”

67

audit.c usage: system(command)

./audit “my_info.txt; /bin/sh”

system(/bin/cat “my_info.txt; /bin/sh”)

68

audit.c usage: system(command)

./audit “my_info.txt; /bin/sh”

system(/bin/cat “my_info.txt; /bin/sh”)

System() interprets this as two different commands

69

audit.c usage: system(command)

./audit “my_info.txt; /bin/sh”

system(/bin/cat my_info.txt; /bin/sh)

System() interprets this as two different commands

70

audit.c usage: system(command)

./audit “my_info.txt; /bin/sh”

system(/bin/cat my_info.txt; /bin/sh)

Because this is a Set-UID

program.

When owner = root, the shell

will be run with root

permissions

71

audit.c usage: system(command)

./audit “my_info.txt; /bin/sh”

system(/bin/cat my_info.txt; /bin/sh)

Because this is a Set-UID

program.

When owner = root, the shell

will be run with root

permissions

72

A safer way to invoke programs

execve() executes the program

referred to by pathname. argv[] is

the command line arguments for the

command

int execve(const char *pathname, char *const argv[], char *const envp[]);

73

A safer way to invoke programs

execve() executes the program

referred to by pathname. argv[] is

the command line arguments for the

command

int execve(const char *pathname, char *const argv[], char *const envp[]);

74

A safer way to invoke programs

execve() executes the program

referred to by pathname. argv[] is

the command line arguments for the

command

int execve(const char *pathname, char *const argv[], char *const envp[]);

Using execve() instead of system()

Fail!

75

A safer way to invoke programs

execve() executes the program

referred to by pathname. argv[] is

the command line arguments for the

command

int execve(const char *pathname, char *const argv[], char *const envp[]);

Using execve() instead of system()

Fail!

execve(“/bin/cat”,[“aa;/bin/sh”])

/bin/cat “aa;/bin/sh”

Treated as an entire argument to the command

Fail!

76

What makes this unsafe? Why was this program exploitable?

77

Security Principle #1

There needs to be a clear separation of data and code

If user input needs to be treated as data, NONE of the contents should be treated as code

78

The ability (and risks) of invoking external commands is not limited to C

Python has a system call…

Perl has open()

PHP has system

79

80

Environment variable are a set of dynamic

named values that affect the way a running

process will behave (key-value pairs)

81

Environment variable are a set of dynamic

named values that affect the way a running

process will behave (key-value pairs)

Example: The PATH variable

• We use command such as ls and passwd

We could be in any directory; how does it know to run /bin/ls ?

82

Environment variable are a set of dynamic

named values that affect the way a running

process will behave (key-value pairs)

Example: The PATH variable

• We use command such as ls and passwd

We could be in any directory; how does it know to run /bin/ls ?

If the full path is not provided, the shell process will use the PATH env. Variable to search for it!

83

Environment variable are a set of dynamic

named values that affect the way a running

process will behave (key-value pairs)

Example: The PATH variable

• We use command such as ls and passwd

We could be in any directory; how does it know to run /bin/ls ?

If the full path is not provided, the shell process will use the PATH env. Variable to search for it!

You can run the env command to print out all the environment variables

84

Where do Env Variables come from?

Processes can get environment variables in

one of two ways:

fork() → the child process

inherits its parent process’s

environment variables.

exec()→ the memory space is

overwritten, and all old

environment variables are lost.

However, execve() can explicitly

pass environment variables from

one process to another

./passenv 1

./passenv 2

./passenv 3

85

Where do Env Variables come from?

86

Attacks with Env Variables

• Hidden usage of

environment variable is part

of what makes them so

dangerous

• Users can also modify

environment variables…

• If Set-UID programs make

use of environment

variables, they become part

of the attack surface

87

Attacks with Env Variables

• A program may invoke an external program (e.g., via system()) to do some work

• PATH contains a list of directories to search for executable programs

• If a program is invoked without using the absolute path (e.g., system(“ls”), the

PATH env. variable is used to search for the program

• PATH can be set by users….

Any ideas???

88

Attacks with Env Variables

• A program may invoke an external program (e.g., via system()) to do some work

• PATH contains a list of directories to search for executable programs

• If a program is invoked without using the absolute path (e.g., system(“ls”), the

PATH env. variable is used to search for the program

• PATH can be set by users….

Any ideas???
Task 6 in Lab 2 ☺

89

Attacks with Env Variables

Compile and set as Set-UID program

export is used to define new variables

90

• Linking finds the external library code referenced in a

program

• Static linking – linker combines program code/external code

into final executable

• Dynamic Linking- linker uses env. Variables to locate

external dependencies (increase the attack surface)

How does the linker know where to look?

91

• LD_PRELOAD contains a list of shared libraries to search first

• Provides precedent over standard function calls (malloc, free, etc)

• If functions are not found, it will consult the location specified in LD_LIBRARY_PATH

• We can set both values, which gives us an opportunity for users to influence linking

Task 7

92

• LD_PRELOAD contains a list of shared libraries to search first

• Provides precedent over standard function calls (malloc, free, etc)

• If functions are not found, it will consult the location specified in LD_LIBRARY_PATH

• We can set both values, which gives us an opportunity for users to influence linking

This will run the standard libc sleep

Write our own sleep

function within out mylib.c

program

mylib.c

93

• LD_PRELOAD contains a list of shared libraries to search first

• Provides precedent over standard function calls (malloc, free, etc)

• If functions are not found, it will consult the location specified in LD_LIBRARY_PATH

• We can set both values, which gives us an opportunity for users to influence linking

This will run the standard libc sleep

Write our own sleep

function within out mylib.c

program

Add function to shared librarymylib.c

94

• LD_PRELOAD contains a list of shared libraries to search first

• Provides precedent over standard function calls (malloc, free, etc)

• If functions are not found, it will consult the location specified in LD_LIBRARY_PATH

• We can set both values, which gives us an opportunity for users to influence linking

This will run the standard libc sleep

Write our own sleep

function within out mylib.c

program

Add function to shared library

Set variable to look at our library, not default one

mylib.c

95

• LD_PRELOAD contains a list of shared libraries to search first

• Provides precedent over standard function calls (malloc, free, etc)

• If functions are not found, it will consult the location specified in LD_LIBRARY_PATH

• We can set both values, which gives us an opportunity for users to influence linking

This will run the standard libc sleep

Write our own sleep

function within out mylib.c

program

Add function to shared library

Set variable to look at our library, not default one

???./myprog.c

mylib.c

96

• LD_PRELOAD contains a list of shared libraries to search first

• Provides precedent over standard function calls (malloc, free, etc)

• If functions are not found, it will consult the location specified in LD_LIBRARY_PATH

• We can set both values, which gives us an opportunity for users to influence linking

This will run the standard libc sleep

Write our own sleep

function within out mylib.c

program

Add function to shared library

Set variable to look at our library, not default one

???./myprog.c

mylib.c

97

Capability leaking occurs when some process gains escalated

privileges, but does not clean up the privileges when downgraded

We eventually fork and

create a new process

98

Capability leaking occurs when some process gains escalated

privileges, but does not clean up the privileges when downgraded

We eventually fork and

create a new process

fd is defined

before the fork()

/etc/zzz is only

writeable by root

99

Capability leaking occurs when some process gains escalated

privileges, but does not clean up the privileges when downgraded

We eventually fork and

create a new process

fd is defined

before the fork()

/etc/zzz is only

writeable by root

Drop privileges

100

Capability leaking occurs when some process gains escalated

privileges, but does not clean up the privileges when downgraded

We eventually fork and

create a new process

fd is defined

before the fork()

/etc/zzz is only

writeable by root

Drop privileges

Close file in

parent process

101

Capability leaking occurs when

some process gains escalated

privileges, but does not clean up the

privileges when downgraded

We eventually fork and

create a new process

fd is defined

before the fork()

/etc/zzz is only

writeable by root

Drop privileges

Close file in

parent process

The file descriptor is still open in

the child process!

102

Security Principle #2

Subjects and Programs should be given only the

privileges needed to complete their task

Disable privileges when they aren’t needed

103

Lab 2

