
CSCI 476: Computer Security
Lecture 7: Buffer Overflow

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1*all images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Announcements

Lab 3 Due Sunday 10/2 @ 11:59 PM

Project?

Pizza Party on Thursday @4:10 PM in Barnard 254

3

Program Memory Layout

Low addresses

High addresses

int x = 100;

int main()

{

int a =2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr)

return 1;

}

4

Program Memory Layout

Low addresses

High addresses

int x = 100;

int main()

{

int a =2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr)

return 1;

}

5

Program Memory Layout

Low addresses

High addresses

int x = 100;

int main()

{

int a =2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr)

return 1;

}

6

Program Memory Layout

Low addresses

High addresses

int x = 100;

int main()

{

int a =2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr)

return 1;

}

7

Program Memory Layout

Low addresses

High addresses

int x = 100;

int main()

{

int a =2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr)

return 1;

}

8

Program Memory Layout

Low addresses

High addresses

int x = 100;

int main()

{

int a =2;

float b = 2.5;

static int y;

int *ptr = (int *) malloc(2*sizeof(int));

ptr[0] = 5;

ptr[1] = 6;

free(ptr)

return 1;

}

9

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

10

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame Pointer

Value of Var 1

Value of Var 1

Stack Frame Format

11

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

12

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

13

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

We need to know where to

return to when this function

finishes

* Function arguments are put onto the stack in reverse order

14

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

15

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

16

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

17

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

18

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

19

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

p = 1

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

20

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

p = 1

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

21

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

p = 1

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

22

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

p = 1

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

This function is finished, so we need to

determine where the next instruction of the

program is

23

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

p = 1

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

This function is finished, so we need to

determine where the next instruction of the

program is

Look at the return address in the stack frame!

24

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

p = 1

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

Return back to foo()

25

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

Return back to foo()

26

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

foo() is done, we now need to return back to main!

27

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

foo() is done, we now need to return back to main!

28

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

foo() is done, we now need to return back to main!

29

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

foo() is done, we now need to return back to main!

30

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

p = 0

Return Address for foo2

Previous Frame Pointer

31

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

foo2() gets called again, so put it on the stack again

p = 0

Return Address for foo2

Previous Frame Pointer

32

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

p = 0

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

33

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

p = 0

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

34

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

p = 0

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

35

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

p = 0

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

36

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

p = 0

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()

37

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

38

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

Stack

frame for

main()

39

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Value of Arg 1

Value of Arg 2

Return Address

Previous Frame
Pointer

Value of Var 1

Value of Var 1

S
ta

c
k
 F

ra
m

e
 F

o
rm

a
t

Program done!

40

Stack and Function Invocation The Stack

0xFFFFF

41

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

42

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

43

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

44

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

45

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

The input we give this program gets put into memory at some stack frame

46

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

The input we give this program gets put into memory at some stack frame

buffer

47

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

The input we give this program gets put into memory at some stack frame

buffer

Buffer only has 10 characters, so we are not allowed to give 12 characters, right?

48

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

The input we give this program gets put into memory at some stack frame

buffer

Buffer only has 10 characters, so we are not allowed to give 12 characters, right?

49

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

buffer

Instead of ./myprogram reese

What if we did…..

50

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

buffer

Instead of ./myprogram reese

What if we did…..

./myprogram AAA

51

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

./myprogram AAA

This buffer can “overflow” into other regions of memory

It will overwrite whatever was located at that address

52

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

./myprogram AAA

This buffer can “overflow” into other regions of memory

It will overwrite whatever was located at that address

What can our input control?

53

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

./myprogram AAA

This buffer can “overflow” into other regions of memory

It will overwrite whatever was located at that address

Our buffer overwrites the return addresses of other stack frames

54

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

A
A

./myprogram AAA

This buffer can “overflow” into other regions of memory

It will overwrite whatever was located at that address

Our buffer overwrites the return addresses of other stack frames

55

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

./myprogram AAA

This buffer can “overflow” into other regions of memory

It will overwrite whatever was located at that address

Our buffer overwrites the return addresses of other stack frames

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

EVIL

AAAAA

56

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

./myprogram AAA

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

EVIL

AAAAA

What could we

overwrite it with?

57

Stack and Function Invocation The Stack

0xFFFFF

…

…

Return Address

..

main() stack frame

…

…

Return Address

CHAR BUFFER[]

foo() stack frame

./myprogram AAA

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

AAAAA

EVIL

AAAAA

What could we

overwrite it with?

Our own malicious code!

58

Putting Stuff on the stack How does a program know where to find function args and local variables?

There are two important registers that are used for accessing the stack

59

Putting Stuff on the stack How does a program know where to find function args and local variables?

There are two important registers that are used for accessing the stack

esp = points to top of stack ebp = points to the current stack frame

60

Putting Stuff on the stack How does a program know where to find function args and local variables?

There are two important registers that are used for accessing the stack

esp = points to top of stack ebp = points to the current stack frame

Function prologue

61

Putting Stuff on the stack How does a program know where to find function args and local variables?

There are two important registers that are used for accessing the stack

esp = points to top of stack ebp = points to the current stack frame

Function epilogue

62

Putting Stuff on the stack How does a program know where to find function args and local variables?

There are two important registers that are used for accessing the stack

esp = points to top of stack ebp = points to the current stack frame

ebp + 4
ebp + 8

ebp + 12

ebp - 4

63

A Vulnerable Program

Reads (up to) 517 bytes of data from badfile

Storing the file contents into a str variable

of size 517 bytes

Main → bof() → strcpy() →

Calling bof() function with str as an

argument, which is copied to buffer

64

A Vulnerable Program

What could go wrong if we have

some buffer overflow vulnerability?

Thoughts?

65

A Vulnerable Program

What could go wrong if we have

some buffer overflow vulnerability?

garbage
garbage
garbage
garbage
garbage

garbage

garbage
garbage

malicious
garbage

code

New

Address
Overwriting the return address

with something else can lead to:

Non-existent address

→ CRASH

Access Violation

→ CRASH

Invalid Instruction

→ CRASH

Execution of attacker’s code! → Oh no!!

66

Next time: Exploiting a Buffer Overflow

67

Announcements

Pizza Party today at 4PM @ Barnard 254

Project details have been released

Extra Credit Opportunity

Office Hours tomorrow are moved to 11-11:50

Shellshock lab due on Sunday → Questions?

68

int bof(char *str)

{

char buffer[100];

// potential buffer overflow!

strcpy(buffer, str);

return 1;

}

int main(int argc, char **argv)

{

char str[517];

FILE *badfile;

badfile = fopen("badfile", "r");

fread(str, sizeof(char), 517, badfile);

bof(str);

return 1;

}

69

int bof(char *str)

{

char buffer[100];

// potential buffer overflow!

strcpy(buffer, str);

return 1;

}

int main(int argc, char **argv)

{

char str[517];

FILE *badfile;

badfile = fopen("badfile", "r");

fread(str, sizeof(char), 517, badfile);

bof(str);

return 1;

}

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

Stack

frame of

bof()

70

int bof(char *str)

{

char buffer[100];

// potential buffer overflow!

strcpy(buffer, str);

return 1;

}

int main(int argc, char **argv)

{

char str[517];

FILE *badfile;

badfile = fopen("badfile", "r");

fread(str, sizeof(char), 517, badfile);

bof(str);

return 1;

}

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

71

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

The CPU needs to keep track of two things:

1. The location of the top of stack

2. The location of the current stack frame we are executing

72

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

The CPU needs to keep track of two things:

1. The location of the top of stack

2. The location of the current stack frame we are executing

?????

73

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

The CPU needs to keep track of two things:

1. The location of the top of stack

2. The location of the current stack frame we are executing

$ esp

The register $esp points to the top of the stack

74

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

The CPU needs to keep track of two things:

1. The location of the top of stack

2. The location of the current stack frame we are executing

$ esp

The register $esp points to the top of the stack
$ ebp

The register $ebp points to the base of the current stack frame

75

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

$ ebp

76

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

$ ebp

Value of b

77

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

$ ebp

Value of b

Value of a

78

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

$ ebp

Value of b

Value of a

Return Address back to main()

79

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

$ ebp

Value of b

Value of a

Return Address back to main()

Previous Frame Pointer (main())

80

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp$ ebp

Value of b

Value of a

Return Address back to main()

Previous Frame Pointer (main())

We now move ebp to point to our current stack frame

We can locate values based on the location of ebp

ebp + 4

ebp + 8

ebp + 12

81

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

$ ebp

Value of b

Value of a

Return Address back to main()

Previous Frame Pointer (main())

Value of x

82

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

Value of b

Value of a

Return Address back to main()

Previous Frame Pointer (main())

Value of x

Value of y

$ ebp

83

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

When a function finishes, a function epilogue occurs and cleans up the stack

84

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Here is the current stack frame in bof()

We can control the contents of
buffer[] with our badfile

85

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Here is the current stack frame in bof()

We can control the contents of
buffer[] with our badfile

Badfile =
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAA

We can overflow this buffer and

overwrite the contents above it

86

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

87

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

We can overwrite it, so it points to the

location of our own code we also inject

And our code will ……..

88

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

We can overwrite it, so it points to the

location of our own code we also inject

And our code will get a root shell

(there are many things our code can do, but we will be focused on getting a root shell)

89

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

buffer[99]

.

.

.

.

.

buffer[0]

“badfile”

90

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

buffer[99]

.

.

.

.

.

buffer[0]

“badfile”

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

Malicious Code

(overwrite)

New return address

(overwrite)

(overwrite)

91

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

buffer[99]

.

.

.

.

.

buffer[0]

“badfile”

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

Malicious Code

(overwrite)

New return address

(overwrite)

(overwrite)

92

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

buffer[99]

.

.

.

.

.

buffer[0]

“badfile”

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

/bin/sh

(overwrite)

New return address

(overwrite)

(overwrite)

93

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

buffer[99]

.

.

.

.

.

buffer[0]

“badfile”

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

/bin/sh

(overwrite)

New return address

(overwrite)

(overwrite)

Pretty easy, right?

94

Our first buffer overflow attack

sudo sysctl -w kernel.randomize_va_space=0

sudo ln -sf /bin/zsh /bin/sh

(but first we need to change some settings)

• Turn off address randomization (countermeasure)

• Set /bin/sh to a shell with no RUID != EUID privilege drop countermeasure (for now…)

• Compile a root owned set-uid version of stack.c w/ executable stack enabled + no stack guard

gcc -o stack -z execstack -fno-stack-protector stack.c

sudo chown root stack

sudo chmod 4755 stack

95

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

96

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Step 1

We don’t know where the

return address is… but it

is somewhere on the

stack!

97

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Step 1

Step 2: Find the address to place our

malicious shellcode

Step 2

98

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Step 1

Step 2: Find the address to place our

malicious shellcode

Step 2

• We do know the location of our buffer (usually)

• We know the location of $ebp

99

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Step 2: Find the address to place our

malicious shellcode

Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten)
$ebp

100

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten)
$ebp

We can use gdb to debug and find addresses in memory

101

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten)
$ebp

We can use gdb to debug and find addresses in memory

(clone repository and run make)

102

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten)
$ebp

We can use gdb to debug and find addresses in memory

103

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

Set a breakpoint at bof()

104

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

(a lot of output will be displayed here)

105

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

(a lot of output will be displayed here)

3. Step into the bof function

106

Step 1: Find the offset between the base

of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

Address of ebp!

107

Step 1: Find the offset between the base

of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

Address of buffer!

108

Step 1: Find the offset between the base

of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference between ebp and buffer

Our offset!!! (almost)

109

Step 1: Find the offset between the base

of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference between ebp and buffer

We need to add 4 to reach the return address

108 + 4 = 112 is our total offset

110

(…)

(…)

1. Set a breakpoint at bof()

2. Run the program

until it reaches the

breakpoint

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference

between ebp and buffer

3. Step into the bof function

TL;DR GDB

111

Step 2: Find the address to place our

malicious shellcode

Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten)

112

Stuff

Stuff

How should we find the

address for our injected

code???

We don’t know the address of

bof’s stack frame

112

Step 2: Find the address to place our

malicious shellcode

Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten)

112

Stuff

Stuff

How should we find the

address for our injected

code?

We can guess!

What should our stuff

be in in payload be?

Does it matter?

113

Step 2: Find the address to place our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000

How should we find the

address for our injected

code?

We can guess!
Program crashes!

114

Step 2: Find the address to place our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000

How should we find the

address for our injected

code?

We can guess!
Program crashes!

115

Step 2: Find the address to place our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000

How should we find the

address for our injected

code?

We can guess!
Program crashes!

116

Step 2: Find the address to place our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000

How should we find the

address for our injected

code?

We can guess!
Program crashes!

This could potentially go

on for a very long time 

We need a better

approach to guessing!

117

Step 2: Find the address to place our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000

How should we find the

address for our injected

code?

We can guess!Program crashes!

Instead of garbage, we will fill

it with executable instructions

But we don’t want that instruction to do

anything…

118

Step 2: Find the address to place our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

00000000000

000000000

0X90

119

Step 2: Find the address to place our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

00000000000

000000000

The NOP instruction does

nothing, and the advances to

the next instruction

120

Step 2: Find the address to place our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

The NOP instruction does

nothing, and the advances to

the next instruction

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

121

Step 2: Find the address to place our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP
The NOP instruction does

nothing, and the advances to

the next instruction

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

122

Step 2: Find the address to place our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP
The NOP instruction does

nothing, and the advances to

the next instruction

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

Incorrect guess, but the program does not crash!

123

Step 2: Find the address to place our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP
The NOP instruction does

nothing, and the advances to

the next instruction

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

Incorrect guess, but the program does not crash!

NOP advances to the next instruction

We should hopefully arrive at our malicious code

124

Step 2: Find the address to place our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP
The NOP instruction does

nothing, and the advances to

the next instruction

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

Next: We need to

construct the contents

of our badfile

125

Step 2: Find the address to place our

malicious shellcode

exploit.py

Creates a list of

NOP

instructions

126

Step 2: Find the address to place our

malicious shellcode

exploit.py

Creates a list of

NOP

instructions

Our start is going to be (517 – len(shellcode))

127

Step 2: Find the address to place our

malicious shellcode

exploit.py

Creates a list of

NOP

instructions

Our start is going to be (517 – len(shellcode))

Code that will be executed

These are the values you got from gdb

128

Step 2: Find the address to place our

malicious shellcode

exploit.py

Creates a list of

NOP

instructions

Our start is going to be (517 – len(shellcode))

Code that will be executed

These are the values you got from gdb

129

Step 2: Find the address to place our

malicious shellcode

Everything is broken

130

Announcements

Everything is broken

Lab 4 will be posted later

today

Go to the career fair

Lab instructions

131

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

buffer[99]

.

.

.

.

.

buffer[0]

“badfile”

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

/bin/sh

(overwrite)

New return address

(overwrite)

(overwrite)

Pretty easy, right?

132

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Step 1

Step 2: Find the address to place our

malicious shellcode

Step 2

133

(…)

(…)

1. Set a breakpoint at bof()

2. Run the program

until it reaches the

breakpoint

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference

between ebp and buffer

3. Step into the bof function

TL;DR GDB

134

Step 2: Find the address to place our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

The NOP instruction does

nothing, and the advances to

the next instruction

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

135

Step 2: Find the address to place our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

The NOP instruction does

nothing, and the advances to

the next instruction

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

LET'S TRY THIS OUT!!!

136

1. Get the address of $ebp with gdb

2. Get the offset from buffer to return address

3. Turn off countermeasures

Turn off ASLR!
sudo sysctl –w kernel.randomize_va_space=0

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

4. Update values in exploit.py

137

1. Get the address of $ebp with gdb

2. Get the offset from buffer to return address

3. Turn off countermeasures

Turn off ASLR!
sudo sysctl –w kernel.randomize_va_space=0

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

4. Update values in exploit.py

Might need to

guess and

check

GDB OFFSET!

138

1. Get the address of $ebp with gdb

2. Get the offset from buffer to return address

3. Turn off countermeasures

Turn off ASLR!
sudo sysctl –w kernel.randomize_va_space=0

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

4. Update values in exploit.py

5. Execute ./exploit.py

139

1. Get the address of $ebp with gdb

2. Get the offset from buffer to return address

3. Turn off countermeasures

Turn off ASLR!
sudo sysctl –w kernel.randomize_va_space=0

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

4. Update values in exploit.py

5. Execute ./exploit.py

6. Run our vulnerable program!

ROOT SHELL!!

140

Shellcode

This is the code we are executing

What does this mean?

141

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

142

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

Compile and copy/paste it into our badfile!!

143

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

Compile and copy/paste it into our badfile!!

Problem: Compiling adds on a lot of junk into our program that will give us issues

144

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

Compile and copy/paste it into our badfile!!

145

Shellcode execve is a system call!

execve will look in certain

registers for which command

to execute

146

Shellcode

execve is a system call!

execve will look in certain

registers for which command

to execute

New Goal: Write the assembly instructions for loading the

correct arguments into registers, and then calling exec!

147

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

→ execve(“/bin/sh”, argv, 0)

148

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

→ execve(“/bin/sh”, argv, 0)

1. Load the registers

EAX

EBX

ECX

EDX

= 0x0000000b (11)

= address of “/bin/sh” string

= address of argv array

= 0

149

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

→ execve(“/bin/sh”, argv, 0)

1. Load the registers

EAX

EBX

ECX

EDX

= 0x0000000b (11)

= address of “/bin/sh” string

= address of argv array

= 0

2. Invoke the syscall!! → Int 0x80

150

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

→ execve(“/bin/sh”, argv, 0)

(you wont need to write shellcode, but it is important to know what it is doing ☺)

151

Defeating Countermeasures

152

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

What did we do previously to get past this?

153

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Linked /bin/sh to a different shell (zsh) !

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

Any ideas what we could do with our payload?

154

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Linked /bin/sh to a different shell (zsh) !

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

Solution: Before running bash/dash, set our RUID to 0!

Invoke setuid(0) to our shellcode!

155

Countermeasure #2: ASLR

ASLR = Randomize the start location of the stack, heap, libs, etc

(address space layout randomization)

• This makes guessing stack

addresses more difficult!

156

Countermeasure #2: ASLR (address space layout randomization)

Any ideas?

157

Countermeasure #2: ASLR (address space layout randomization)

We are going to guess (a lot!!!)

158

Countermeasure #2: ASLR (address space layout randomization)

We are going to guess (a lot!!!)

159

Announcements

Lab 4 released and due 10/16

Lecture next Thursday will either be cancelled or virtual (I am out of the country 10/13 – 10/18)

160

Buffer Overflow Countermeasures

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

• Non executable stack

161

Buffer Overflow Countermeasures

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

• Non executable stack

Add shellcode to our payload that sets the RUID = 0

162

Buffer Overflow Countermeasures

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

• Non executable stack

Add shellcode to our payload that sets the RUID = 0

Brute Force

163

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Guard

Compiler Countermeasure***

164

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Guard

Compile with stack guard turned off:

We overflowed the array!

165

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Guard

Compile with stack guard turned off:

We overflowed the array!

Compile with stack guard turned on:

Aborted when we pass the stack guard

166

Non-Executable Stack

Compiler Countermeasure***
THE STACK

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

NOP NOP NOP ONPWritable areas of program data

& stack cannot be executed

167

Non-Executable Stack

Compiler Countermeasure***
THE STACK

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

NOP NOP NOP ONPWritable areas of program data

& stack cannot be executed

This does not prevent buffer overflow, however

Instead of injecting our own code, we could….

168

Non-Executable Stack

Compiler Countermeasure***
THE STACK

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

NOP NOP NOP ONPWritable areas of program data

& stack cannot be executed

This does not prevent buffer overflow, however

Instead of injecting our own code, jump to existing code

Which existing code?

169

Defeating Non-Executable Stack

Compiler Countermeasure***

Instead of injecting our own code,

we will jump to existing code

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

………

170

Defeating Non-Executable Stack

Compiler Countermeasure***

Instead of injecting our own code,

we will jump to existing code

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

171

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

Construct Payload using

code and data that is

already on the system

172

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

• Find address of system()

➢ Overwrite the return address with system()’s address

• Find the address of the “/bin/sh” string

➢ To get system() to run this command

• Construct arguments for system()

➢ To find the location in the stack to place the address to the “/bin/sh” string (arg for system())

173

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

• Find address of system()

➢ Overwrite the return address with system()’s address

This can be found by using gdb

174

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

• Find address of system()

➢ Overwrite the return address with system()’s address

• Find the address of the “/bin/sh” string

➢ To get system() to run this command

175

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

• Find address of system()

➢ Overwrite the return address with system()’s address

• Find the address of the “/bin/sh” string

➢ To get system() to run this command

We can define an environment variable that has the value “bin/sh”

The environment variable gets loaded into the program and placed onto the stack

176

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

• Find address of system()

➢ Overwrite the return address with system()’s address

• Find the address of the “/bin/sh” string

➢ To get system() to run this command

• Construct arguments for system()

➢ To find the location in the stack to place the address to the “/bin/sh” string (arg for system())

Remember that
system(“/bin/ls”)

will fork and spawn a new

process

./stack

/bin/sh

./stack

exit()

**We also need to find the address for the exit() function so the original process can terminate gracefully

177

Lessons Learned

178

Lessons Learned

Security Principle #3

Address spaces for processes should be isolated from one another,

and there should be no interference between two address spaces

Process A

Process D B
u

ffer O
verflo

w

179

Lessons Learned

Security Principle #4

In a process or system FAILS for whatever reason, it will default to a

SAFE outcome

