
CSCI 476: Computer Security
Lecture 10: Sniffing, Spoofing, TCP/IP Attacks

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Announcement

XSS Lab due Monday October 31st @ 11:59 PM

• The worm task coming soon

TCP/IP Sniffing/Spoofing Lab due Sunday Nov 6th

Make sure your lab screenshots include the command you ran ☺

If I haven’t responded
to a DM/email, please

poke me about it

3

Brief Review of

Communication of the web:

• URL

HTTP Request:

• Format: Method, Headers, Body

• Methods: GET, POST, HAD, UPDATE

• Headers: Host, referrer, User-agent, Cookie…

HTTP Response:

• Format: Status, Response Headers, Body

• Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality

• Serve static resources (HTML, CSS, Images)

• Serve dynamic Resources (PHP, Ruby, Java, Javascript…)

• Query Databases

➢ Relational (MySql)

➢ Non-Relational (MongoDB)

Client Server

Database

protocol://hostname[:port]/[path/]file[?color=red&type=suv]

Query parameters can be passed via URL or in an HTTP request

Big Idea: Our input data gets passed to
another host through URL parameters and

an HTTP requests

4

Router

SRC

DST

GET
WWW.BLAH.COM

Headers

Body

HTPP Request

Sending our packet to

a destination is not a

simple task

5

Router

SRC

DST

GET
WWW.BLAH.COM

Headers

Body

HTPP Request

Sending our packet to

a destination is not a

simple task

Our packet will travel

through routers,

which help forward

our packet to the

correct destination

6

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

HTPP Request

“User Data”

7

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

HTPP Request

“User Data”

A packet arriving to a machine needs to

know which process/application to go to

???

8

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

H
T

P
P

 R
e
q
u
e
s
t

Each application is bound to a port, so each packet will

need to know what port they need to go to

Port 80 Port 222 Port 6001
TCP Header

9

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

H
T

P
P

 R
e
q
u
e
s
t

Port 80 Port 222 Port 6001

TCP Header

10

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

H
T

P
P

 R
e
q
u
e
s
t

Port 80 Port 222 Port 6001

TCP Header

11

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

H
T

P
P

 R
e
q
u
e
s
t

TCP Header

We also need to know which device to send to → IP Address

10.9.0.5

12

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

H
T

P
P

 R
e
q
u
e
s
t

TCP Header

We also need to know which device to send to → IP Address

10.9.0.5

IP Header

Our packet eventually gets the IP address

13

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

H
T

P
P

 R
e
q
u
e
s
t

TCP Header

We also need to know which device to send to → IP Address

10.9.0.5

IP Header

Routers maintain a table that will forward a

packet to the next router based on the

packet’s destination IP address*

14

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

Body

H
T

P
P

 R
e
q
u
e
s
t

TCP Header

We also need to know which device to send to → IP Address

10.9.0.0/24

IP Header

Routers maintain a table that will forward a

packet to the next router based on the

packet’s destination IP address*

10.9.0.1

10.9.0.2

10.9.0.3

10.9.0.4
Devices in a subnet share a

common prefix for their IP

addresses

15

The Journey of a packet

Our focus will be on the transport layer (TCP/UDP) and the network layer (IP)

Packets are encapsulated in various protocol layers; each

has a header and payload

16

The Journey of a packet

Our focus will be on the transport layer (TCP/UDP) and the network layer (IP)

Packets are encapsulated in various protocol layers; each

has a header and payload

17

WIFI, Fiber optic, Copper

Wire, Birds
** Many devices are sharing this medium

18

Devices connect to a network via a Network Interface Card (NIC)

Each NIC as a Medium Access Control (MAC) address

Every NIC “hears” all the frames “on the wire” (or “in the air”)

NIC checks destination (dst) address of the packet’s link layer header

Accept packets that match the NIC’s MAC address, “drop” other packets

25-6B-78-1D-A0-57

25-6B-78-1D-A0-57 41-91-31-CB-F0-BD

19

How do we get all the network traffic?

Promiscuous Mode

• Frames that are not destined to a given NIC are normally

discarded

• When operating in promiscuous mode, the NIC passes every

frame received from the network to the kernel

• If a sniffer program is registered with the kernel, it will be able to

see all the packets

There are tons of packets. We don’t need all of them…

The interesting ones are TCP, UDP, DNS, HTTPS

Lets start “sniffing” for packets!

Wireshark is the most

popular packet sniffing and

analysis tool

20

Announcement

XSS Lab due Monday October 31st @ 11:59 PM

TCP/IP Sniffing/Spoofing Lab due Sunday Nov 6th

If I haven’t responded
to a DM/email, please

poke me about it

21

Sniffing in Python

In another terminal, run the ping command to create some ICMP packetsRun our sniffer program (sudo is needed)

sniffer.py

Our program is picking up the ICMP packets!!

22

Setup

For this lab, we will logged into our attacker machine (our VM) and logged into a victim machine (a container)

On the attacker

machine, we can

also see these

packets in

Wireshark!

docker-compose up -d

23

udp_spoof.py

icmp_sniff_spoof.py

1

2

1

2

We can set the packets source IP and destination

IP
Souce ip: 1.2.3.4 (bogus)

Destination IP: 10.0.2.69 (also bogus)

We can set the packets source port

and destination port (udp)

Source port: 8888 (bogus)

Destination port: 9090 (also bogus) 1

2

1 Sniff/listen for ICMP packets coming
from 10.0.2.4

2 When we intercept an ICMP packet, extract the

packets source IP, and then create a spoofed

packet

• 44.22.11.33 will receive a packet from 10.0.2.4

24

Attacks on TCP
• SYN Flooding

• SYN Reset

• TCP session hijack

me

Please don’t try to do this stuff on real servers outside of the VM

25

Application Layer

Transport Layer

Network Layer

(Session layer and presentation are not included in this graphic)

Application Layer

Transport Layer

Network Layer

HTTP Request

… …

TCP Connection

When using the internet, you are commonly using a TCP protocol.

You (a TCP client) connect to a TCP server to exchange information

to ensure delivery

26

Application Layer

Transport Layer

Network Layer

(Session layer and presentation are not included in this graphic)

Application Layer

Transport Layer

Network Layer

HTTP Request

TCP Connection

When using the internet, you are commonly using a TCP protocol.

You (a TCP client) connect to a TCP server to exchange information

to ensure delivery

This process of establishing a TCP

connection has a very specific process

→ TCP Handshake

27

TCP Client TCP Server

T
C

P
 H

e
a
d

e
r

Data

Packet

28

TCP Client TCP Server

T
C

P
 H

e
a
d

e
r

Data

Packet

TCP Handshake:

1. Client sends a SYN to the server

SYN

29

TCP Client TCP Server

T
C

P
 H

e
a

d
e
r

Data

Packet

TCP Handshake:

1. Client sends a SYN to the server

2. Server sends back a SYN + ACK

SYN

SYN + ACK

30

TCP Client TCP Server

T
C

P
 H

e
a

d
e
r

Data

Packet

TCP Handshake:

1. Client sends a SYN to the server

2. Server sends back a SYN + ACK

3. Client sends back an ACK

SYN

SYN + ACK

ACK

31

TCP Client TCP Server

T
C

P
 H

e
a

d
e
r

Data

Packet

TCP Handshake:

1. Client sends a SYN to the server

2. Server sends back a SYN + ACK

3. Client sends back an ACK

SYN

SYN + ACK

ACK

(Data can start being sent!)

32

You can see this happening in Wireshark

SYN = 0

SYN = 0 + ACK = 1

ACK = 1

33

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

34

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN

SYN + ACK

Waiting for an ACK…

35

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN

SYN + ACK

Waiting for an ACK…

If it does not get an ACK after some amount

of time, it will retransmit

SYN + ACK

SYN + ACK

36

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN

SYN + ACK

Waiting for an ACK…

If it does not get an ACK after some amount

of time, it will retransmit

SYN + ACK

SYN + ACK

How many times should we retransmit before giving up?

Set by the operating system!

37

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

The TCP server will hold our request until we drop it

TCP Request SYN Queue

There is a time period where our

request is held in the SYN queue

before it is dropped

38

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

The TCP server will hold our request until we drop it

TCP Request SYN Queue

There is a time period where our

request is held in the SYN queue

before it is dropped

What can we do with our knowledge of spoofing?

39

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

The TCP server will hold our request until we drop it

TCP Request SYN Queue

There is a time period where our

request is held in the SYN queue

before it is dropped

What can we do with our knowledge of spoofing?

Send out a lot of SYN requests from spoofed source IP

address

40

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN
The TCP server will hold our request until we drop it

TCP Request SYN Queue

SYN

SYN

SYN

SYN

SYN

SYN

SYN

SYN

We can quickly the SYN queue

buffer with our spoofed request

The TCP server will hold those requests in the

queue while it waits

41

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN
The TCP server will hold our request until we drop it

TCP Request SYN Queue

SYN

SYN

SYN

SYN

SYN

SYN

SYN

SYN

We can quickly the SYN queue

buffer with our spoofed request

The TCP server will hold those requests in the

queue while it waits

If the buffer is full…

42

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN
The TCP server will hold our request until we drop it

TCP Request SYN Queue

SYN

SYN

SYN

SYN

SYN

SYN

SYN

SYN

We can quickly the SYN queue

buffer with our spoofed request

The TCP server will hold those requests in the

queue while it waits

If the buffer is full… The TCP server won’t be able

to accept new connections!

43

Let’s do some evil stuff

TCP Client TCP Server

The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to

receive an ACK

SYN
The TCP server will hold our request until we drop it

TCP Request SYN Queue

SYN

SYN

SYN

SYN

SYN

SYN

SYN

SYN

We can quickly the SYN queue

buffer with our spoofed request

The TCP server will hold those requests in the

queue while it waits

If the buffer is full… The TCP server won’t be able

to accept new connections!

44

Let’s do some evil stuff

If a new SYN comes in (from a legitimate user), they will be denied

(The size of this buffer is also set

by the operating system)

45

Turn off countermeasures…

sysctl –w net.ipv4.tcp_syncookies = 0

Turn off SYN cookies

Use netstat to see the current status of server’s TCP connections

From another machine, use telnet to establish a TCP connection

46

We will also increase the number of retries (SYN + ACK) the server will do before giving up

AND

Make the SYN queue smaller

47

synflood.py

1

1
Repeatedly send a TCP packet to 10.9.0.7,

with a random source IP address

Victim Server

We’ve filled

this server with

spoofed SYN

requests

Attacker

New terminal

Server is full!

Denied

48

Issues:

We had to change the

number of retries/queue

size to make this attack

easier for us

If the number of retries is low,

and the waiting queue is

large… we might not fill it in

time!

49

Issues:

We had to change the

number of retries/queue

size to make this attack

easier for us

If the number of retries is low,

and the waiting queue is

large… we might not fill it in

time!

Solution?

• Use C (lmao)

synflood.c

50

Issues:

We had to change the

number of retries/queue

size to make this attack

easier for us

If the number of retries is low,

and the waiting queue is

large… we might not fill it in

time!

Solution?

• Use C (lmao)

synflood.c

Countermeasures

SYN Cookies- Allocate server

resources only for established

connections

TCP Request SYN Queue

Waiting… ACK received!

51

TCP Reset Attack

• Goal: Break an established TCP

connection by sending a spoofed

RESET (RST) packet

T
C

P
 H

e
a
d

e
r

Data

Packet

This is different than

sending a FIN packet

52

TCP Reset Attack

In order to do our attack, we first need to find an ongoing TCP

communication between two users!

10.9.0.510.9.0.6

10.9.0.1

A server reads data in some order

(typically by sequence number)

SEQ # = 4440

If the server gets a SEQ# of something

below 4440, it will ignore it

In our spoofed packet, we

need to make sure we select a

sequence number that

matches the sequence number

the server is expecting!

(@@@ are placeholder. You will fill them in)

We also need to select the same ports!

53

TCP Reset Attack

In order to do our attack, we first need to find an ongoing TCP

communication between two users!

10.9.0.510.9.0.6

10.9.0.1

A server reads data in some order

(typically by sequence number)

We can pull this information from wireshark!

On the attack, do telnet to access victim server

54

TCP Reset Attack

55

Announcements

Lab 7 Due Thursday November 10th (Need to update website)

No class on Tuesday next week (11/8)

Sorry for some weird code issues on the XSS lab

Course Roadmap

- Lab 7 TCP Attacks (11/10)

- Lab 8 Symmetric Crypto (11/20)

- Lab 9 Hashing (12/2)

- Research Project (12/8)

- Final Exam Tuesday December 13th @ 2:00 – 3:50 PM in Reid 102

→ Will review as we get closer to end of semester

56

TCP Conversation

57

TCP Reset Attack

We need the information to generate our spoofed packet:

1. Open up Wireshark, and start generating some TCP traffic between

Client 1 container and victim server

Logged into the user 1 container Look at the most recent packet sent between client and server

10.9.0.6 10.9.0.5

10.9.0.1

Port 23Port 38724

Your information
may be different

Telnet connection established

58

TCP Reset Attack

We need the information to generate our spoofed packet:

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Fill in src IP, dst IP, src port, dst port, and sequence number into reset.py

10.9.0.6 10.9.0.5

10.9.0.1

Port 23Port 38724

Your information will
be different

59

TCP Reset Attack

We need the information to generate our spoofed packet:

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Fill in src IP, dst IP, src port, dst port, and sequence number into reset.py

3. Hop back to client 1 container, press enter, connection should be closed!

10.9.0.6 10.9.0.5

10.9.0.1

Port 23Port 38724

Your information will
be different

60

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark

Just like with the TCP reset, we

need this information for our

packet
Your information will

be different

61

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark

Just like with the TCP reset, we

need this information for our

packet
Your information will

be different

For TCP Hijack, we will also be sending a command to run. What commands could we run?

62

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark

Just like with the TCP reset, we

need this information for our

packet
Your information will

be different

For TCP Hijack, we will also be sending a command to run. What commands could we run?

We could steal a file (demo), or we could create a root shell reverse shell

63

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark

3. Fill in packet information in sessionhijack.py

64

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark

3. Fill in packet information in sessionhijack.py\

4. Summon a netcat server on attack machine (separate terminal)

netcat –lnv 9090

65

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container

and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark

3. Fill in packet information in sessionhijack.py\

4. Summon a netcat server on attack machine (separate terminal)

5. Run session hijack program

TCP server sent us the output of the cat command!

66

Reverse Shell

A reverse shell gives us (an attacker) a bash shell that we can remotely use → Total control!!

In our spoofed packet, that will be the command that we want to run!

(remember to have netcat server also running!)

