
CSCI 476: Computer Security
Hashing

Reese Pearsall
Fall 2022
https://www.cs.montana.edu/pearsall/classes/fall2022/476/main.html 1

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

2

Announcement

Lab 8 (Secret-Key Encryption)

due Sunday 20th

Rest of semester dates are

posted

Extra credit will be applied at

end of semester

How to corrupt a ciphertext

3

Hash Functions

Hash Functions map arbitrary size data to data of fixed size

• An essential building block in cryptography, with desirable practical and security properties

Ex. f(x) = x mod 100

How many buckets?

What to do if two keys map to the same bucket?

4

Hash Functions

Hash Functions map arbitrary size data to data of fixed size

• An essential building block in cryptography, with desirable practical and security properties

Ex. f(x) = x mod 100

How many buckets?

What to do if two keys map to the same bucket?

5

Hash Functions

Cryptographic Hash Functions map arbitrary size data to data of fixed size

• But with three additional important properties

SHA-256 = A cryptographically secure

hashing function

Input = Message M

Output = Hashed Message M

6

Hash Functions Properties

7

Hash Functions Properties (tl;dr)

Hash values are very difficult to reverse. They were designed

to be one-way

Gives an arbitrary size input a fixed-size unique* hash identifier

* We will break this

The go-to way to reverse a hash is through brute force

8

Computing Hashes with OpenSSL

Calculating the Hash for a text file with SHA 256

Property of Hashes: One small change in file → will drastically change hash (avalanche effect)

9

Families of Hash Function

We will be focusing on MD5, and breaking MD5 in our Lab ☺

10

Families of Hash Function

11

How does MD5 work?

The compression of

data is also a helpful

application of hash

functions

12

Calculating Hashes in Programming Languages

Python 3 code to demonstrate the

working of MD5 (string - hexadecimal)

import hashlib

initializing string

str2hash = “csci476"

encoding csci476 using encode()

then sending to md5()

result = hashlib.md5(str2hash.encode())

printing the equivalent hexadecimal value.

print("The hexadecimal equivalent of hash is : ", end ="")

print(result.hexdigest())

Pretty much every

programming language

can calculate hashes

13

Applications of Hashing

MD5
password123

73bd1ddd3ef1051bf5c4bde7a2b5a6c2

e2ee5b2d1719edef3f8120cff39f0180

31973ff867a5a4c2546ec4cca1c126b4

c527fc24f5932e932f44c31f1f8c674e

Output space of MD5 (128 bits)

00000000000000000000000000000000

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

What are some uses for hashing?

14

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

15

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

Sent to professor for grading

hello_world

16

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

What if the message

got tampered with?
hello_world

hello_world

17

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

What if the message

got tampered with?
hello_world

hello_world

She will have no idea because this

executable program seems totally normal

and came from a trustworthy source

18

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

What if the message

got tampered with?
hello_world

hello_world

We can use hashing to introduce some integrity to our messages

19

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

hello_world

hello_world

89defae676abd3e3a42b41df17c40096

1. Generate hash for source file

20

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

hello_world

hello_world

89defae676abd3e3a42b41df17c40096

1. Generate hash for source file

2. Instructor generates hash for file she receivedb0608c4e1775ad8f92e7b5c191774c5d

21

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

hello_world

hello_world

89defae676abd3e3a42b41df17c40096

1. Generate hash for source file

2. Instructor generates hash for file she receivedb0608c4e1775ad8f92e7b5c191774c5d

The hashes do not match!

22

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

hello_world

89defae676abd3e3a42b41df17c40096

b0608c4e1775ad8f92e7b5c191774c5d

When a message gets tampered

with, the new hash will be completely

different

Different hashes = Something fishy

happened!

23

Applications of Hashing

Integrity Verification

hello_world

A CSCI 112 Student

Instructor

hello_world

89defae676abd3e3a42b41df17c40096

b0608c4e1775ad8f92e7b5c191774c5d

When a message gets tampered

with, the new hash will be completely

different

Different hashes = Something fishy

happened!

If your seed labs ZIP

doesn’t match that that

hash, then you might have

a modified OS image

24

Applications of Hashing Password Verification

Websites need to know password information so that users can login

But websites should never store passwords in plaintext

Instead, websites will store the hash of your password

25

Applications of Hashing Password Verification

Websites need to know password information so that users can login

But websites should never store passwords in plaintext

Instead, websites will store the hash of your password

If two people have the same password….

26

Applications of Hashing Password Verification

Websites need to know password information so that users can login

But websites should never store passwords in plaintext

Instead, websites will store the hash of your password

If two people have the same password….

Their passwords will be the same!

27

Applications of Hashing Password Verification

Salt is just some random string appended to a password

WdRrWCQzpassword123

When a service uses salted passwords, the same input (password) can result in different hashes!

28

Applications of Hashing Fairness and Commitment (scary)

• Disclosing a hash does not disclose the original message

• Useful to commit secret without disclosing the secret itself

29

Attacks on Hashing

Suppose we get a hash for an unsalted password

cc3a0280e4fc1415930899896574e118

What could we do to retrieve the original password?

• Brute Force

❑ Dictionary Attack

❑ Rainbow Tables

30

Attacks on Hashing

Suppose we get a hash for an unsalted password

cc3a0280e4fc1415930899896574e118

What could we do to retrieve the original password?

• Brute Force

❑ Dictionary Attack

❑ Rainbow Tables

Brute force is difficult (time consuming), a more interesting attack is collision attacks

31

Collision Attacks

hello_world

89defae676abd3e3a42b41df17c40096

hello_world

89defae676abd3e3a42b41df17c40096

What if we could create two

files, with totally different

behaviors, but have the same

hash?

32

Collision Attacks

hello_world

89defae676abd3e3a42b41df17c40096

hello_world

89defae676abd3e3a42b41df17c40096

Hash Collision Attacks compromise the integrity of

a program by creating a malicious file that has a

same hash

33

Collision Attacks

MD5

hello_world

hello_world

106a7d06be131315e25a7cbe57af398c

How likely is? Very unlikely?

00000000000000000000000000000000

00000000000000000000000000000001

00000000000000000000000000000010

EEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

…

…

There is a very large amount of possible hashes

~(2128)

34

Collision Attacks

MD5

hello_world

hello_world

106a7d06be131315e25a7cbe57af398c

How likely is? Very unlikely?

00000000000000000000000000000000

00000000000000000000000000000001

00000000000000000000000000000010

EEFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

EFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF

…

…

There is a very large amount of possible hashes

~(2128)

More likely than you think…

35

Birthday Paradox

In a room of 23 people, what is the probability that

two people share the same birthday?

Its not 23/365 We will instead compute the chance that a group of people don’t share a birthday

365/365

36

Birthday Paradox

In a room of 23 people, what is the probability that

two people share the same birthday?

Its not 23/365 We will instead compute the chance that a group of people don’t share a birthday

365/365 364/365

37

Birthday Paradox

In a room of 23 people, what is the probability that

two people share the same birthday?

Its not 23/365 We will instead compute the chance that a group of people don’t share a birthday

365/365 364/365 363/365

38

Birthday Paradox

In a room of 23 people, what is the probability that

two people share the same birthday?

Its not 23/365 We will instead compute the chance that a group of people don’t share a birthday

365/365 364/365 363/365 362/365

…

343/365

39

Birthday Paradox

In a room of 23 people, what is the probability that

two people share the same birthday?

Its not 23/365 We will instead compute the chance that a group of people don’t share a birthday

365/365 364/365 363/365 362/365

…

343/365

Probability that 23 people don’t share a birthday

Probability that 23 people do share a birthday

Go Watch this video: https://www.youtube.com/watch?v=ofTb57aZHZs

https://www.youtube.com/watch?v=ofTb57aZHZs

40

Birthday Paradox

Go Watch this video: https://www.youtube.com/watch?v=ofTb57aZHZs

What's the probability that two people in a group of 23 people share a birthday?

About 50%

What's the probability that two files share a hash?

More probable than you think…

Turns out, we can generate two files with the same hash in a matter of seconds…

https://www.youtube.com/watch?v=ofTb57aZHZs

41

Announcements

Lab 8 (Secret-Key Encryption)

due Sunday 20th

Email me if you need anything

over the break

Last day to drop with a W is today

XOR task

42

Hash Functions Properties

43

Message Authentication Code (MAC)

1. Append a message with a shared

secret (m + s)

2. Compute hash of (m+s) →

H(m+s)

3. Send H(m+s) with message m

4. Sender sends: (H(m+s), m)

1. Receiver gets (H(m+s), m)

2. Append m with shared secret s

(m + s)

3. Compute H(m+s)

4. The value receiver computed

should match the H(m+s) he

received

Uses for Hashing:

44

Brute Force Approaches

Long time, and for very unfeasible for cryptographically secure hash functions

afc285bebb3dd733796cb06db01cd59a

Given a hashed password, can you brute force the original password?

Techniques

• Dictionary Attack

• Rainbow Tables

45

Dictionary Attack

We will use an existing list of common passwords

afc285bebb3dd733796cb06db01cd59a

1. Iterate through each line of file

2. Compute hash of word

3. Check for match

This works for cracking weak, unsalted passwords

46

Rainbow Tables

Project-RainbowCrack

Efficient way to store password hashes. Consists of plaintext-hash chains

Word Hash Word Hash
Hash Reduce Hash Reduce

Looking up a value in the rainbow table can happen quick, but these files are typically very large

A large file of pre-computed hashes

Not efficient for complex, salted passwords

(Brute force can take years, with rainbow tables, it can take weeks/months)

47

Rainbow Tables

• Project-RainbowCrack

Tables for alphanumeric, special

character passwords can take a

long time to generate, so instead

of doing it yourself, you can buy

rainbow tables that other people

have generated!

There are free, open-source tools that can generate rainbow tables for you

48

Rainbow Tables using RainbowCrack

49

Hash Collisions

Goal: Create two different files with the same md5 hash

Motivation

Our ultimate goal would be to create two executables (one benign, one malicious) with the same hash

(This is difficult to do, but we will show that it can theoretically happen)

50

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

MD5 Under the hood

Fact: Message is divided into blocks, and each block is run through a compression function

Important Fact: Each block will be 64 bytes

51

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

52

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

53

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

Same Hash!

54

Hash Collisions (MD5collgen)

On our VM, we have a tool called md5collgen that will generate

two files with the same prefix
We get to choose this prefix!

Same Hash!

Compare with xxd

55

Hash Collisions (MD5collgen)

What if out prefix is a multiple of 64?

Our prefix is exactly 64 bytes

→ No padding is added!

56

Hash Collisions (MD5collgen)

What if out prefix is a multiple of 64?

Our prefix is exactly 64 bytes

→ No padding is added!

57

Hash Collisions (md5collgen)

58

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

59

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Final Hash

(same for each)

60

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Suffix

Suffix

H H H H H

If we append the same suffix,

then this computation will also

be the exact same for M and N

61

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Suffix

Suffix

H H H H H

If we append the same suffix,

then this computation will also

be the exact same for M and N

H(m || s) == H(n || s) s = shared suffix

62

Hash Collisions (Suffix Extension)

M

N

H(m) == H(n)

H H H H H H H H H

64 64 64 64 64 64 64 64 64

Suffix

Suffix

H H H H H

If we append the same suffix,

then this computation will also

be the exact same for M and N

H(m || s) == H(n || s) s = shared suffix

63

Hash Collisions (Generating Two executable files with the same MD5 hash)

This is a program that will print

out the contents of an array

We will create two variants of

this program, but the program

will have the same hash

Prefix SuffixP

Prefix SuffixQ

64

Hash Collisions (Generating Two executable files with the same MD5 hash)

We will create two variants of

this program, but the program

will have the same hash

Prefix

Suffix

65

Hash Collisions (Generating Two executable files with the same MD5 hash)

We will create two variants of

this program, but the program

will have the same hash

Prefix

Suffix

md5collgen()

Prefix P Prefix Q

These will have the same hash!

P and Q will be 128 bytes (multiple of 64)

Prefix P Prefix Q Suffix

Because we know the suffix extension property holds true, we

know the hash of these two programs will also be the same

66

Hash Collisions (Generating Two executable files with the same MD5 hash)

Prefix

P Q

Suffix Suffix

Prefix

67

Hash Collisions (Generating Two executable files with the same MD5 hash but

behave very differently)

We can change the contents of this section of the

program because it is just array data (it won’t break

anything)

First, we need to find the starting location (the

offset) of the xyz array → this will be the

beginning of P and Q

68

Hash Collisions (Generating Two executable files with the same MD5 hash but

behave very differently)

We can find where xyz begins in our program easily,

because we filled it with A’sFirst Byte of xyz array

Start of XYZ = 0x3020 (Hexadecimal)

12320 (decimal)

69

Task 4 on the lab

0

12320
Our prefix will be bytes 0-

12320 of the program!
Prefix

We want our P and Q to be 128 bytes

Why 128?

→ Multiple of 64

→ Wont overflow an array of size 200

70

Task 4 on the lab

0

12320
Our prefix will be bytes 0-

12320 of the program!
Prefix

We want our P and Q to be 128 bytes

Why 128?

→ Multiple of 64

→ Wont overflow an array of size 200

QP

71

Task 4 on the lab

0

12320
Our prefix will be bytes 0-

12320 of the program!
Prefix

We want our P and Q to be 128 bytes

Why 128?

→ Multiple of 64

→ Wont overflow an array of size 200

QP

Therefore, our suffix will begin at byte # 12320 + 128 = 13448

13448

Suffix

16992 (size of executable)

1
2
8
 b

y
te

s

72

Task 4 on the lab

0

12320
Prefix

QP

12448

Suffix

16992 (size of executable)

1
2
8
 b

y
te

s

Get contents of prefix and suffix

Use collision tool to get (prefix + P) and (prefix + Q)

(We don’t have to worry about padding because

our values are (nicely) divisible by 64)

73

Task 4 on the lab

0

12320
Prefix

QP

12448

Suffix

16992 (size of executable)

1
2
8
 b

y
te

s

Get contents of prefix and suffix

Use collision tool to get (prefix + P) and (prefix + Q)

Add suffix to programs

Verify that executables are different, but have the same hash

74

Task 4 on the lab

0

12320
Prefix

QP

12448

Suffix

16992 (size of executable)

1
2
8
 b

y
te

s

Make sure you still have a valid program ☺

Somewhere in this output, you

should find a small difference

