y

CSCIl 476: Computer Security

Asymmetric Cryptography

Reese Pearsall
Fall 2022

https://www.cs.montana.edu/pearsall/classes/fall2022/466/main.html

Announcement

Lab 9 Due Sunday December 4t

Lab 10 Due Sunday December 11%
Will post a final exam study guide on Thursday
Grading ???

Next Tuesday will be a project workday

Thursday’s class ?7?

Hash Collisions (Generating Two executable files with the same MD5 hash but
behave very differently)

fll)l?)ZZiseedéUH:~)hash_lab§ gcﬁ print array.c -o pa
[11/17/22]seed@VM:~/hash _1ab$ bless pa

/home/seed/hash_lab/pa - Bless

File Edit View Search Tools
o - &

pa B
0000Z2£fa6 |00 00 OO0 OO OO OO OO OO OO

Help

“EBE Qa

00 00 00 30

0000303e |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00003051 |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00003064 |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00003077 |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
00003082 |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
0000309d |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
000030b0 |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
000030c3 |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41
000030d6 |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41

First Byte of xyz array

00002£fb9 |00 00 OO0 OO OO0 0O OO 00 OO 10 00 00

00002£fcc |00 00 OO0 OO 40 10 00 00 0O 0 00 OO 00 OO OO OO 0O T
0000Z£d4£|00 00 00 OO OO0 0O OO 00 OO D0 OO0 0D 00 OO0 00 00 00 e eieneennnnnnnnnn
0000Z£2£|00 00 OO0 OO OO0 0O OO 00 OO D0 OO0 0D 00 OO0 00 00 00 e eieneennnnnnnnnn
0000300500 0O OO OB 40 00 OO 00 OO 00 00 OO OO OO OO 0O OO T
00003018 |00 0O OO OO OO 00 OO OO g% 41 41 41 41 41 41 41 41 41 41)........ ARRARARARARRA
0000302k |41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 41 |AAAAARAARARAAAARAAA

ARARAARARARARRARRRRRRR
ARARAARARARARRARRRRRRR
ARARAARARARARRARRRRRRR
ARARAARARARARRARRRRRRR
ARARAARARARARRARRRRRRR
ARARAARARARARRARRRRRRR
ARARAARARARARRARRRRRRR
ARARAARARARARRARRRRRRR
ARARADBRRARRRRRARRRARAG

000030e9|43 43 3A 20 28 55 62 75 BE 74 75 20 39 2E 33 ZE 30 2D 31 |CC: (Ubuntu 9.3.0-1
0000D30cf |37 75 62 75 BGE 74 75 31 TE 32 30 ZE 30 34 29 Z0 39 2E 33 |Tubuntul~20.04) 9.3
O000310£|2E 30 00 00 OO0 OO0 OO OO0 OO OO OO OO OO OO OO OO 0D OO0 OO uD. i w et s i e e e aaan
00003122 |00 OO0 OO 0O OO OO OO OO OO OO OO OO OO OO0 OO OO0 0D OO0 D3| iimenneeaneennas
00003135|00 01 OO0 18 03 OO0 OO0 OO0 OO OO OO OO OO OO0 OO OO 0D OO0 OO0 i i s et s e ennnn
00003148 |00 00 OO 0O O3 00 02 00 38 03 00 OO OO0 OO0 OO0 OO OO 0O OOf.wwuuwenn B
Signed 8 bit: | 65 Signed 32 bit: | 1094795585 Hexadecimal: | 41414141 [x]

Unsigned & bit: | 65 Unsigned 32 bit: = 1094795585 Decimal: | 065 065 065 065

Signed 16 bit: | 16705 Float 32 bit: | 12.07843 Octal: | 101101101 101
Unsigned 16 bit: | 16705 Float 64 bit: | 2261634.50980392 Binary: | 01000001 01000001 01000

Show little endian decoding Show unsigned as hexadecimal ASCII Text: | AAAA
Offset: 0x3020 / 0x425F ‘ Selection: None INS

We can find where xyz begins in our program easily,
because we filled it with A’'s

Start of XYZ = 0x3020 (Hexadecimal)
12320 (decimal)

MONTANA

STATE UNIVERSITY

Task 4 on the lab

[11/17/22]seed@M:~/.../07 hash$ cat print array.c
#include <stdio.h>

unsigned char xyz[200] = {
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, O0x41, 0x41, 0x41, O0x41, O0x41, O0x41, O0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, 0x41, 0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, O0x41, 0x41, 0x41, O0x41, Ox41, Ox41, O0x41, 0x41,
0x41, 0x41, O0x41, 0x41, 0x41, O0x41, O0x41, O0x41, O0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, O0x41, 0x41, 0x41, O0x41, Ox41, Ox41, O0x41, 0x41,
0x41, 0x41, O0x41, 0x41, 0x41, O0x41, O0x41, O0x41, O0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, O0x41, 0x41, 0x41, O0x41, Ox41, Ox41, O0x41, 0x41,
0x41, 0x41, O0x41, 0x41, 0x41, O0x41, O0x41, O0x41, O0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, O0x41, O0x41, 0x41, 0x41,
0x41, 0x41, 0x41, 0x41, 0x41, O0x41, 0x41, O0x41, 0x41, 0x41

}i

int main()
{
int i;
for (i=0; i<200; i++){
printf("sx", xyz[il);
}
printf("\n");
}

MONTANA
STATE UNIVERSITY

Task 4 on the lab

: ~ ch$ raf_ nrint arrav.c O

Our prefix will be bytes 0-
12320 of the program!

We want our P and Q to be 128 bytes

Why 1287
- Multiple of 64
- Wont overflow an array of size 200

}i

int main()

{

int i;

for (i=0; i<200; i++){
printf("sx", xyz[il);

}

printf("\n");

}

MONTANA
STATE UNIVERSITY

Task 4 on the lab

ash$ cat print arrav.c

Our prefix will be bytes 0-
12320 of the program!

We want our P and Q to be 128 bytes

Why 1287
- Multiple of 64
- Wont overflow an array of size 200

0x41, 0x41, 06x41, 0x41, 0x41, Ox41, Ox41, 0O0x41, 0x41, 0x41,
0x41, 0x41, 06x41, 0x41, 0x41, Ox41, Ox41, 0x41, 0x41, 0x41,
0x41, 0x41, 06x41, 0x41, 0x41, Ox41, Ox41, O0x41, 0x41, 0x41,
0x41, 06x41, 06x41, 0x41, 0x41, Ox41, Ox41, O0x41, 0x41, 0x41,
0x41, 0x41, 06x41, 0x41, 0x41, Ox41, Ox41, 0O0x41, 0x41, 0x41,
0x41, 0x41, 06x41, 0x41, 0x41, Ox41, Ox41, O0x41, 0x41, 0x41

}l

int main()
{
int i;
for (i=0; i<200; i++){
printf("sx", xyz[il);
}
printf("\n");
}

MONTANA
STATE UNIVERSITY

Task 4 on the lab

ash$ cat print arrav.c

® ou preficuill be bytes
T I T ST I T T 12320 of the program!

We want our P and Q to be 128 bytes

Why 1287
- Multiple of 64
- Wont overflow an array of size 200

selAqQ 82T

12448

Therefore, our suffix will begin at byte # 12320 + 128 = 12448

int main()
{

int i;

for (i=0; 1<200; i++){
printf("%sx", xyz[i])

}

printf("\n");

} 16992 (size of executable)

MONTANA
STATE UNIVERSITY

Get contents of prefix and suffix

[11/17/22]seed@UH:~/hash:1ab$ head -c 12320 pa > prefix
[11/17/22]seed@VM:~/hash_lab$ tail -c +12448 pa > suffix

Task 4 on the lab

hash$% cat nrint arrav.c

)

12320

Use collision tool to get (prefix + P) and (prefix + Q)

H

N

o [11/17/22]seed@VM:~/hash_lab$ md5collgen -p prefix -o prefix and P prefix and Q
o MD5 collision generator v1.5

~—+
q))
0)]

by Marc Stevens (http://www.win.tue.nl/hashclash/)

Using output filenames: 'prefix and P' and 'prefix_and Q'

Using prefixfile: 'prefix'
Using initial value: fa3f7a62525b9c90471862a4a04139a5

Generating first block: ..
12448 Generating second block: SO1..

Running time: 1.78726 s

Prefix + [PADDING] P

MD5 Collision
= Prefix >
Generator
Suffix ({7 oo | [

(We don’t have to worry about padding because
our values are (nicely) divisible by 64)

Y

16992 (size of executable)

MONTANA
STATE UNIVERSITY

Task 4 on the lab)

- Get contents of prefix and suffix
0 [11/17/22]seed@UH:~/hash:1ab$ head -c 12320 pa > prefix

Prefix [11/17/22] seedeVM:~/hash_Lab$ tall -c +12448 pa > suffix
12320

Use collision tool to get (prefix + P) and (prefix + Q)

[11/17/22]seed@VM:~/hash_lab$ md5collgen -p prefix -o prefix and P prefix and Q

MD5 collision generator v1.5
by Marc Stevens (http://www.win.tue.nl/hashclash/)

hash$% cat nrint arrav.c

eedQyM. ~ 0

S9IA(Q BCT

Using output filenames: 'prefix and P' and 'prefix_and Q'

Using prefixfile: 'prefix'
Using initial value: fa3f7a62525b9c90471862a4a04139a5

Generating first block: ..
12448 Generating second block: SO1..

Running time: 1.78726 s

Add suffix to programs
[11/17/22] seed@VM:~/hash_lab$ cat prefix and P suffix > programl.out
[11/17/22] seed@VM:~/hash_lab$ cat prefix and Q suffix > program2.out

SUffIX ®Verify that executables are different, but have the same hash

[11/17/22]seed@VM:~/hash_lab$ diff programl.out program2.out
Binary files programl.out and program2.out differ
[11/17/22]seed@VM:~/hash_lab$ md5sum programl.out
T489a326ed9c692f31leabccab06062ce programl.out
[11/17/22]seed@VM:~/hash_lab$ md5sum program2.out
f489a326ed9c692f31leabccab06062ce program2.out

16992 (size of executable)

MONTANA

STATE UNIVERSITY

Task 4 on the lab

h$ cat print arrav.c

Make sure you still have a valid program ©

[11/17/22]seed@VM:~/hash_lab$./programl.out
000060000000000000000000000AO00OA2515c9822bBcB8e1c3265b6d48b082b19d4fae48dbe5b2412
773177388eble812afe86cc31T982b6T3d9ecda828b4dbdchb17¢c9d974a22315b9db0e36b2165c6d3d4
5981447c72b594f618043calede8b2546366ed15aeedbec86debb70259e58T498e442dabed82fco4
c67actbec66eab7dc38908fbc2d77dfe9841
4141414141414141414141414141414141

[11/17/22]seed@VM:~/hash_lab$./program2.out
000000000000000000000000000000002515¢c9822b0c8e1c3265b6d48b082b19d4f2e48dbe5b2412
773177388eble812afe86cc31T982b6f3d9ec8da828b4bdcb17c9d974a22315b1db0e36b2165c6d3d
45981447c72b5941618043caledeb2546366ed15acedbec86deb6b70259e581498e442dabedB82Fche
cbbacfbec66eab7dc38908fbcad77dfe9841
4141414141414141414141414141414141

[11/17/22] seed@VM:~/hash_lab$ I

Somewhere in this output, you
should find a small difference

int 1i;

for (i=0; i<200; i++){
printf("%sx", xyz[i]);

}

D ll\t;'lll III

16992 (size of executable)

MONTANA
STATE UNIVERSITY

Symmetric key encryption uses the
same, shared, key for encrypting
and decrypting

What is the one major hurdle we
have not discussed yet?

How do the keys get sent without being
intercepted? Do the keys get encrypted?

Block Cipher

Initialization
Vector (1V)

Symmetric Encryption

Y | ?
Secret Same Key -
Key o
Ciphertext Ciphertext Ciphertext
R — A4sh*L@9.
m—— T6=#/>B#1 _
1PRL39P20
—' —_—

Plain Text Cipher Text Plain Text

MONTANA

STATE UNIVERSITY

Asymmetric Cryptography

AKA Public key Cryptography

The keys used for encrypting and decrypting data are different

Additionally, each user now gets two-keys. A public key, and a private key

This involves some complicated math, and | won’t go super
deep into it. YouTube videos can explain it much better than |
can

RSA (Rivest—Shamir—-Adleman) is the most popular public key cryptosystem.
We rely on it whenever we do communicate securely on the internet

12

Asymmetric Cryptography

AKA Public key Cryptography

The keys used for encrypting and decrypting data are different

Additionally, each user now gets two-keys. A public key, and a private key

This involves some complicated math, and | won’t go super
deep into it. YouTube videos can explain it much better than |
can

RSA (Rivest—Shamir—-Adleman) is the most popular public key cryptosystem.
We rely on it whenever we do communicate securely on the internet

13

'Asymmetric Cryptography (RSA)

Alice Bob

Plaintext

Alice has a plaintext that she
wants to send to bob

Asymmetric Cryptography (RSA)

Alice g Bob

_~7 Public Key
N

% ﬂQ///
A’//
Ciphertext

She uses Bob’s public key to
encrypt her message

y

Alice

Bob

'Asymmetric Cryptography (RSA) ~

¥

o =

Public Key

=

Ciohertext i i Eve can intercept this message,
P _er extis sent over some But can’t decrypt it (public key is not used for decrypting!)
medium

Asymmetric Cryptography (RSA)

Alice

Bob

H Private Key

! \

Bob uses his private key to /’
decrypt the message. Nobody (_--—"' Decrypt
else knows Bob’s private key

Public Key

L YT XYY X1}

R

Ciohertext i i Eve can intercept this message,
P _er extis sent over some But can’t decrypt it (public key is not used for decrypting!)
medium

' Asymmetric Cryptography (RSA)

If you multiply two prime numbers (p and q)
together, the product can only be divisible by those
two number

5183
P70 *?707%? =5183

This is very difficult to figure out for the people that don’t know p or q

In fact, there is not an efficient program that can calculate the factors of integers

This problem is in NP

' Asymmetric Cryptography (RSA)

If you multiply two prime numbers (p and q)
together, the product can only be divisible by those
two number

RSA is based on large numbers that are difficult to factorize
The public and private keys are derived from these prime numbers

How long should RSA keys be? 1024 or 2048 bits long!

The longer the key = the more difficult to crack (exponentially)

®(n) = number of values

less than n which are
relatively prime to n

Relatively prime

7] 1]
Factors of 7 H Factors of 9
]

The only factor that is common to both 7and 9is {1}

7 and 9 are relatively Prime

Factors of 8 Factors of 10

Factors common to both 8 and 10 are {1, 2}

8 and 10 are NOT relatively prime numbers |

Euler’s Totient Function

3125
3126

How many of these
numbers are relatively prime
w/ 31277

Difficult.. But very easy for
the product of two prime
#sl!

The ®(n) of a product of
two prime numbers will

always be (p-1)(g-1)

A number is relatively prime to n if they

share no common factors

Wmmetric Cryptography (RSA) L.« siofen goods

Alice

Bob

Step 1: Choose two large primer numbers, p and q

mmetric Cryptography (RSA)

Alice

Eve’s stolen goods

Bob

p =53
g=>59
n=3127

Step 1: Choose two large primer numbers, p and q
Step 2: Calculate the product n

mmetric Cryptography (RSA)

Alice
p=>53
gq=2959
n=3127

Step 1: Choose two larg
Step 2: Calculate the prg
Step 3: Calculate ®(n)

Eve’s stolen goods

Cue
Relotlvelg prlme THE MATH EXPERT

Bob

Factors of 7 4 Q Factors of 9

The only factor that is common to both 7and 9is {1}

W

7 and 9 are relatively Prime

Factors of 8 Factors of 10

Factors common to both 8 and 10 are {1, 2}

| 8 and 10 are NOT relatively prime numbers |

®(n) = number of values less than n

hich are relatively prime to n

1

2 How many of these

3 numbers are relatively prime
w/ 31277

3125

3126

mmetric Cryptography (RSA) Eve’s stolen goods

Alice
p=>53
gq=2959
n=3127

Step 1: Choose two larg
Step 2: Calculate the prg
Step 3: Calculate ®(n)

Cue
Relotlvelg prlme THE MATH EXPERT

Bob

Factors of 7 4 Q Factors of 9

The only factor that is common to both 7and 9is {1}

W

7 and 9 are relatively Prime

Factors of 8 Factors of 10

Factors common to both 8 and 10 are {1, 2}

| 8 and 10 are NOT relatively prime numbers |

®(n) = number of values less than n

hich are relatively prime to n

1
2 How many of these
3 numbers are relatively prime

w/ 31277

3125 Difficult.. But very easy for
3126 he product of two prime
#sl!

mmetric Cryptography (RSA)

Eve’s stolen goods

Alice Bob
p=>53
q=>59 _
= 3127 ®(n) = number of values less than n

which are relatively prime to n

The ®(n) of a product of two prime

Step 1. Choose two large primer numbers, p and g numbers will always be (p-1)(q-1)

Step 2: Calculate the product n
Step 3: Calculate ®(n)

mmetric Cryptography (RSA)

Eve’s stolen goods

Alice Bob
p=>53
q=>59 _

~ 3127 ®(n) = number of values less than n
n= which are relatively prime to n

®(n) = 52*28 = 3016

The ®(n) of a product of two prime

b il al -1)(g-1
Step 1. Choose two large primer numbers, p and g numbers will always be (p-1)(a-1)

Step 2: Calculate the product n
Step 3: Calculate ®(n)

mmetric Cryptography (RSA)

Eve’s stolen goods

®(n) = number of values less than n
which are relatively prime to n

Alice Bob
p=>53
q:59 e:1<e<¢(n)
n=3127 Not be a factor of n, but an integer
®(n) = 3016

Step 1: Choose two large primer numbers, p and q
Step 2: Calculate the product n

Step 3: Calculate ®(n)

Step 4: Choose public exponent e

mmetric Cryptography (RSA)

Eve’s stolen goods

®(n) = number of values less than n
which are relatively prime to n

Alice Bob
p=>53
q:59 e:1<e<¢(n)
n=3127 Not be a factor of n, but an integer
®(n) = 3016
e=3

Step 1: Choose two large primer numbers, p and q
Step 2: Calculate the product n

Step 3: Calculate ®(n)

Step 4: Choose public exponent e

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n

Alice Bob
gﬂ

1. Ke O+

®(n) = 3016

e=3 e

Step 1: Choose two large primer numbers, p and q
Step 2: Calculate the product n

Step 3: Calculate ®(n)

Step 4: Choose public exponent e

Step 5: Select private exponent d

K = some integer that will make
the quotient an integer

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n
Alice Bob
&
p =53

4-50). #2016+

n = 3127
®(n) = 3016
3

Step 1: Choose two large primer numbers, p and q
Step 2: Calculate the product n

Step 3: Calculate ®(n)

Step 4: Choose public exponent e

Step 5: Select private exponent d

K = some integer that will make
the quotient an integer

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n

Alice Bob
gﬂ

0= . A*+3016+]

n=3127

®(n) =3016
e=n3 3

d=2011

Step 1: Choose two large primer numbers, p and q
Step 2: Calculate the product n

Step 3: Calculate ®(n)

Step 4: Choose public exponent e

Step 5: Select private exponent d

K = some integer that will make
the quotient an integer

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n
Bob

Alice

Alice’s Public Key

n=3127
e=3

Secret Information

p =53
q=2959
®(n) = 3016
d=2011

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n

Alice Bob
gﬂ
Alice’s Public Key

n=3127 Bob has a message to send to Alice
e=3

HI - 89

Secret Information Message must be converted into a number
p =53
gq=>59

®(n) = 3016
d=2011

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n
Bob

Alice

Alice’s Public Key

n=3127 Bob has a message to send to Alice
e = 3

Secret Information Use Alice’s Public Key to encrypt
p =53

i e mnod 2127

d=2011

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n
Bob

Alice

Alice’s Public Key

n=3127 Bob has a message to send to Alice
e = 3

Secret Information Use Alice’s Public Key to encrypt
p =53

39 mod 217175
C = 139Y4

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n
Bob

Alice

p=>53
q=>959
®(n) = 3016

\ Alice’s Public Key
‘. n=3127 Bob has a message to send to Alice
\\ e=3
e - T¢
. \)Qo‘ ‘ Use Alice’s Public Key to encrypt

3 e 2 @9 nod 211

Alice decrypts message using her private key < : - I 3q L\-

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n
Bob

Alice

p=>53
q=>959
®(n) = 3016

d=2011

\ Alice’s Public Key

\
. n=3127 Bob has a message to send to Alice
L e=3
\.
' 389

'~’ Use Alice’s Public Key to encrypt

ALl

3 e 2T @9 nod 21 LT
Alice decrypts message using her private key C = | '30| L\.

®(n) = number of values less than n

mmetric Cryptography (RSA) Eve's stolen goods ~ Which are relatively prime to n
Bob

Alice

p=>53
q=>959

®(n) = 3016
d=2011

Alice’s Public Key

n=3127 Bob has a message to send to Alice
€= 3
Alice’s Private Key 89

n=3127 What does eve know?? Use Alice’s Public Key to encrypt

???gmoég\ﬁrjr-—ﬁo\[', gcﬁmoa ’5\’2_"_'_

These is very difficult to figure out,

since she does not know the C - I '3q L\.
factorization of n =

d = 2011

mmetric Cryptography (RSA)

We now have a method for sending secure messages over a possibly unsecure channel!

Alice

Common paint

Limitation of RSA: Can only encrypted data that is
smaller or equal to key length (< 2048 bits)

Secret colours

Public transport
(assume that
mixture separation
is expensive)

I RUI

\
A

oo
n + (»)

\
A

!
A
f
A

+l.
".+l.

Secret colours

Common secret

mmetric Cryptography (RSA)

We now have a method for sending secure messages over a possibly unsecure channel!

Alice

Common paint

Limitation of RSA: Can only encrypted data that is
smaller or equal to key length (< 2048 bits)

Secret colours

Public transport
(assume that
mixture separation
is expensive)

What could we encrypt instead??

I RUI

\
A
\
A

Il
el)-0-[0e

!
A
f
A

o

".+'

Secret colours

Common secret

mmetric Cryptography (RSA)

We now have a method for sending secure messages over a possibly unsecure channel!

Alice

Common paint

Limitation of RSA: Can only encrypted data that is
smaller or equal to key length (< 2048 bits)

Secret colours

I RUI

\
Al
\
A

i g

What could we encrypt instead??

The key for a symmetric cryptography algorithm! (< 2048 bits) Public transport

mixture separation
is expensive)

f
A

o

.Y
A

".+'

Secret colours

Common secret

Symmetric Encryption

Y

Secret Same Key Secret °
Key Key

e o

Same key used for encrypting and decrypting
« Using block ciphers (AES), we can encrypt an arbitrary size of data
» Issue: How to securely share secret keys with each other?

A4Sh*L@9.
T6=#/>B#1
R06/J2.>1L
1PRL39P20
———”

Plain Text

Cipher Text

Plain Text

Public Key Cryptography

keys are different but

» Two keys: Public Key (a lock), and a price key (the key)

Bob's « * Bob' R - : :
3ob, PublicKey [PIOGNZOKW] Privatekey [Bob, Public key is used to encrypt. Private key used to decrypt
tS’top tlr(ying O CXRS'||'_O3JZ/t;jO O tS’top tlzying message
O Mmake SORTuw O make .
fotch 12PN | el | Q72211Y)8 | ey | 21Ch happen Using math, we can securely send messages over an unsecure
- Alice CYB - Alice
/" GEncrypt ' 4 Decrypt ‘ / channel without sharing any sensitive information

plaintext

ciphertext

plaintext

Issue: We can not encrypt stuff bigger than our key (2048 bits)

« Often times, symmetric and asymmetric cryptography are used together
(use RSA to send the key for symmetric crypto!)

We know that Public and Private keys are derived from big prime numbers
(We are talking hundreds of digits long...)

Our computer can't compute products and exponents for such large numbers

OpenSSL on our VMs has tools for generating public/private RSA keys

[11/29/22]seed@VM:~$ sudo openssl genrsa -aesl28 -out private.pem 1024

MONTANA
STATE UNIVERSITY

Example: generate a 1024-bit public/private key pair
- Use openssl genrsa to generate a file, private.pem
- private.pem is a Baseb64 encoding of DER generated binary output

S openssl genrsa -aesl28 -out private.pem 1024 # passphrase cscid76
S more private.pem

Proc-Type: 4,ENCRYPTED
DEK-Info: AES-128-CBC,C30BF6EB3FD6BAYA81CCB9202BISECIA

sLIQ7Fs575z0exdWkZUoiv2W82g03gNERmMEG+fwnVnbsIZAUWSESwiB7tqgz8rEL+
xfL+U201yQNxpmOTUeK1IN3gCcJROCGYSNA1BeNpgLWV1bNSFPYce9GRb4tFr4bhK

RPtINKUryhVnAC4a3gp0gcXklIQLeHeyKQCPQ1SckQRArBzH] jJCNN42N1CVEpcsFE

WJIB81kgDd9Fs1GHc1PTOktW50oVIcB8G2wfo7D85n91SQfSzuwAcyx7/Ecirlo4PfKG
————— END RSA PRIVATE KEY—

MONTANA
STATE UNIVERSITY

modulus:
00:b8:52:5c:
publicExponent:
privateExponent:
4b:0d:ce:53:
primel:
00:ef:14:46:
primeZ2:
00:c5:5d:£8:
exponentl:
00:e6:49:9a:
exponent2:
Tc:ad:77:dc:
coefficient:
3a:7c:b9%:a0:

MONTANA
STATE UNIVERSITY

25:cc:lc:f2:ef:a6:
(0x10001)

65537

dd:eb6:

57:9c:

Ob:£9

44:14:

58:a2:

12:e8:

bb:

doO:

:75:

19:

13:

fa:

The actual content of private.pem:

S openssl rsa -in private.pem -noout -text
Enter pass phrase for private.pem: cscid76
Private-Key: (1024 bit)

Od:c6:

4c:98

dc:88

94:5e:

cb6:8a:

88:b8:

82:

:de:

-ea.

Tf:

52

of:

35:9d:de:

42

c3:

d4

dc:

:15:

38:

:9¢c:

Ob:

:dO:

52:

dad.

da:

42 :

ad.

56:

65

55:

ed:

3d:

24

d8:

ce .

:bb:

1lc

bc:

5d:

al:

72

£9:

5d:

222

17:

The actual content of public.pem:

S openssl rsa -in private.pem -pubout > public.pem
Enter pass phrase for private.pem: cscid76

writing RSA key

S more public.pem

MIGEfMAOGCSgGSIb3DQEBAQUAA4GNADCBRiIiQKBRgQC4UlwlzHzy76Y1nd49XakNUwgJd
Ud3phOuBWWfnLnjIYgQL/spgO9WE+1Q1YPp2t3FBF1jhGHAWMA8abfNXG4jmpD+ug
IXOWVYyXgl2WWilkY2/vs8xI1K+PumWTtg8R8ueAq7RzETc3873D01viMxXWgau7k
zIkUuJ/JCjzjYfbsDQIDAQAB

$ openssl rsa -in public.pem -pubin -text -noout
Public-Key: (1024 bit)

v\ Modulus:
00:b8:52:5¢c:25:cc:7c:f2:ef:a6:35:9d:de:3d:5d: ...
e_ Exponent: 65537 (0x10001)

s Q?,,n\ = qoblic Ke.‘j‘.

MONTANA
STATE UNIVERSITY

OpenSSL Tools: Encryption and Decryption

+ Create a plaintext message:

‘$ echo "This is a secret." > msg.txt ‘

- Encrypt the plaintext:

‘$ openssl rsautl -encrypt -inkey public.pem -pubin -in msg.txt -out msg.enc

MONTANA
STATE UNIVERSITY

OpenSSL Tools: Encryption and Decryption

+ Create a plaintext message:

‘$ echo "This is a secret." > msg.txt

- Encrypt the plaintext:

‘$ openssl rsautl -encrypt -inkey public.pem -pubin -in msg.txt -out msg.enc

- Decrypt the ciphertext:

S openssl rsautl -decrypt -inkey private.pem -in msg.enc
Enter pass phrase for private.pem: cscid76
This is a secret.

MONTANA
STATE UNIVERSITY

OpenSSL Tools: Encryption and Decryption

+ Create a plaintext message:

‘$ echo "This is a secret." > msg.txt

- Encrypt the plaintext:

‘$ openssl rsautl -encrypt -inkey public.pem -pubin -in msg.txt -out msg.enc

- Decrypt the ciphertext:

S openssl rsautl -decrypt -inkey private.pem -in msg.enc
Enter pass phrase for private.pem: cscid76
This is a secret.

MONTANA
STATE UNIVERSITY

IG NUM API

int main ()
BN CTX *ctx = BN _CTX new();

BIGNUM *p, *q, *n, *phi, *e, *d, *m, *c, *res;

BIGNUM *new m, *p minus one, *q minus_one;

p = BN new(); g = BN new(); n = BN new(); e = BN new();
d = BN_new(); m = BN _new(); c = BN _new();

res = BN new(); phi = BN new(); new m = BN new();

p minus one = BN new(); g minus one = BN new();

BN dec2bn(&e, "65537");

> random p and q.
BN generate prime ex(p, NBITS, 1, NULL, NULL, NULL);
BN generate prime ex(q, NBITS, 1, NULL, NULL,

ital Signatures

« What is a unique identifier for bob? What is something that only bob knows and nobody else?
» His private key

Bob encrypts his hashed message using his private key, and sends the signed hash, along
with message to Alice

g Long message

S Fixed-length When Alice receives this message, she must
T 5. VERY ong et find a way to decrypt the signed hash
say..... = Many-to-one _| Opgmdvboijrtnsd
.......... “| hash function | 9ghPPdogm;lcvkb i)
---------- She will use Bob’s public key
Bob
Signed
Package to send hash
to Alice v
' Fgkopdgoo69cmx i
N — s o
Bob’s private
key, Kg~

ital Signatures

« What is a unique identifier for bob? What is something that only bob knows and nobody else?
» His private key

Bob encrypts his hashed message using his private key, and sends the signed hash, along
with message to Alice. Alice decrypts using his public key and verifies that the hashes match

Sending a digital Signature @ sores VEITyiNg a digital signature
) hash
Long message \. o
Fixed-lenath b —— Fgkopdgoo69cmxw _ Encryption
Gear Alice: X Bash g 54psdtermalasofmz v algorithm ¢ 6 b@u :bl
: ob’s public
This is a VERY long letter 1 key,’:).‘(l;+
since there is so much to
say..... _| Many-to-one _| Opgmdvboijrtnsd Long message
.......... hash function gghPPdogm;lcvkb Dear Alice:
""""" This is a VERY long letter Fixed-length
since there is so much to hash
= -~ say.....
- Opgmdvboijrtnsd
Bob gghPPdogm;lcvkb
Bob
Signed
Package to send hash 1 Fixed-length
to Alice I hash
| Fgkopdgoo69cmxw Encryption © .
| — % - — Many—to-one _ OpgdebOIjrtnSd
% 54psdtermalasofmz algorithm b anes hash function gghPPdogm;lcvkh [<_ Compare
L key, KB-

ital Signatures

Signed
hash

Fgkopdgoo69cmxw
—_——
54psdtermalasofmz

Long message

Bob's public
key, Kg*

Encryption
algorithm (— O

E Message

Dear Alice:
This is a VERY long letter Fixed-length
since there is so much to hash
say.....
S Opgmavboijrtnsd
gghPPdogm;lcvkb
Bob
Fixed-length
hash
v
Many-to-one Opgmdvboijrtnsd
hash function gghPPdogm;lcvkb [> compare

Alice,
Deliver a pizza to me.

Bob

Many-to-one

How do we know that this is Bob’s public key ?

“| hash function

v

v

Encryption
algorithm

We don’t have a way to link entities to their public keys

e (=

Trudy’s private

key, Ky

|

Signed (using
Trudy's private key)
message digest

&53 r—
Trudy’s public
key, K

Alice uses Trudy’s
public key, thinking
it is Bob’s, and
concludes the
message is from Bob

Fgkopdgoo69cmxw
S54psdtermalasofmz

ital Certificates

Certificates are an authoritative document that links entities (person, router, organization) to their public key

Creating certificates are done by a Certification Authority (digicert, lets encrypt, comodo)

Some are more trustworthy than others...

CA’s private
key, Kca

=

K< B) > Encryption Certification On your web pl’_OWSGI’, you
g algorithm Authority (CA) exchange certificate
information with the websites
you are visiting

Bob's CA-signed
certificate containing >
his public key, Kg*

y

Symmetric Crypto]{Asymmetric Crypto] and Hashing
together to send secure, authentic messages

-

K (H(m))
H() H K () pomm

b

m

Ks()

Ks mmb| K5'(") }—h
I

to Internet

all work

What you should know

