CSCI 132:
Basic Data Structures and Algorithms

Linked Lists

Reese Pearsall
Fall 2023

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html *All images are stolen from the internet 1

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

Linked Lists

A Linked List Is a data structure that consists of a collection of
connected nodes

Susan

Reese Sarah

Nodes consists of data (String, int, array, etc) and a pointer to the next node

Linked Lists

A Linked List Is a data structure that consists of a collection of
connected nodes

head

\l/ Susan

Reese Sarah

Nodes consists of data (String, int, array, etc) and a pointer to the next node
A Linked List also has a pointer to the start of the Linked List (head)

A Linked List will hold Node objects

public class Node {

private int age;
private String name; } Data
Pointer to

next Node
public Node(int a, String n) {
this.age = a;
this.name = n;
this.next = null;

private Node next; }

Reese

Susan

Sarah

A Linked List will hold Node objects

public void setNext(Node n) {

} this.next = n; System.out.println(reese.getNext () .getData())

7?7
public Node getNext() {
return this.next;

}
public String getData() {

return this.name + ", Age: " + this.age;
}

Reese """-"-'€;> Sarah

A Linked List will hold Node objects

public void setNext(Node n) {

this.next = n; System.out.println(reese.getNext () .getData())

}

public Node getNext() {
return this.next;

This would print out the Sarah node’s data

}

public String getData() {
return this.name + ", Age:

+ this.age;

}

next

Reese ____________€E> Sarah

A Linked List will hold Node objects

public void setNext(Node n) {
this.next = n;
} reese.setNext (susan)
277
public Node getNext() {

return this.next;
}
Susan
public String getData() {
return this.name + ", Age: " + this.age;
}
next

Reese ____________€;> Sarah

S MWMoNmans

A Linked List will hold Node objects

public void setNext(Node n) {

this.next = n;
’ reese.setNext (susan)

}

public Node getNext() {
return this.next;

Set’s the Reese’s node next value to point to Susan

}

public String getData() {
return this.name + ", Age:

Susan

+ this.age;

}

next

The Sarah node also got
removed from the linked list

(1)

Reese

Linked List Methods

 addToFront () -adds new node to beginning of LL
* addToBack () —adds new node to end of LL

e removeFirst () —removes first node of LL

* removelast () —removes last node of LL

* printLinkedList () — prints nodes and their data
head

\l/ Susan

Reese Sarah \.}null

Linked List Methods ¢ 3ddToFront ()

What if the Linked List is empty?

- adds new node to beginning of LL

10

Linked List Methods « addToFront () - adds new node to beginning of LL

What if the Linked List is empty?

Set head equal to the new node

head

J

Reese —1 > null

Linked List Methods « addToFront () - adds new node to beginning of LL

What if the Linked List is not empty?

head

J

Reese 4 null

Linked List Methods « addToFront () - adds new node to beginning of LL

What if the Linked List is not empty?

1. Set the new node’s next value to head

head

J

Susan %_9 Reese 4 null

T Moo

Linked List Methods « addToFront () - adds new node to beginning of LL

What if the Linked List is not empty?

1. Setthe new node’s next value to head
2. Update head to point to new node

head

Susan %_9 Reese 4 null

14

Linked List Methods « addToFront () - adds new node to beginning of LL

public void addToFront(Node newNode) {

What if the Linked List is not empty? if(head == null) {
head = newNode;

}
1. Set the new node’s next value to head elseninode s st Eira
2. Update head to point to new node head = mewNodes ’
head }

Susan §_> Reese 4 null

T Moo

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!
 But how do we know if a node is the last node 22?

head

Susan *___> Reese 4 null

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!
 But how do we know if a node is the last node? If a node’s next value is null

head

Susan *___> Reese 4 null

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!
 But how do we know if a node is the last node? If a node’s next value is null

1. Traverse through the linked list until we find the last node

We will use a while loop to iterate through a Linked List

head - Start at the head node
- Keep on following pointers until we reach null

Susan *___> Reese 4 null

T Moo

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!

 But how do we know if a node is the last node? If a node’s next value is null

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

head

Susan ‘___>

Reese

Sarah

——'null

Linked List Methods

e addToRack () —adds new node to end of LL

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

head

public void addToBack(Node newNode) {

Node current = head;
while(current.getNext() != null) {
current = current.getNext();

}

current.setNext(newNode);

Susan “___> Reese

4 Sarah

——'null

Linked List Methods * printLinkedList () — prints nodes and their data

lterate through each Node in the LL, and print the data in that node

21

Linked List Methods * printLinkedList () — prints nodes and their data

lterate through each Node in the LL, and print the data in that node

public void printLinkedList() {

Node current = head;

while(current != null) {
System.out.println(current.getData());
current = current.getNext();

22

Linked List Methods * printLinkedList () — prints nodes and their data

lterate through each Node in the LL, and print the data in that node

public void printLinkedList() { Always start at the head node

Node current = head; “Keep on looping until we reach the end of the LL”
while(current != null)

System.out.println(current.getData());

current = current.getNext();
} -‘\\‘—-'I
This line updates the current node we are at

} ie. “move to the next node”

23

Linked List Methods e removeFirst () —removes first node of LL

head

Susan > Reese — > null

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node

head

Susan > Reese — > null

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node
2. Update the old head’s next value to be null

head

Susan > null Reese 4 null

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node
2. Update the old head’s next value to be null

public void removeFirst() { j Create a new temporary variable to save 2"d node value
Node temp = this.head.getNext();
head.setNext(null);
head = temp;

} head

Susan > - Reese — > null

27

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node
2. Update the old head’s next value to be null

There's an easier way to do this

head

Susan > - Reese — > null

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node

We don’t need to remove the pointer.

Remember, whenever we iterate or add

something to a list, we always start from the
head node

There's an easier way to do this

If a node is not reachable from the head, itis
essentially removed from the LL !

head

Susan > Reese — > null

29

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node

We don’t need to remove the pointer.

Remember, whenever we iterate or add

something to a list, we always start from the
head node

There's an easier way to do this

public void removeFirst() {

if(size !=0) {

If a node is not reachable from the head, itis
g St G — head essentially removed from the LL !!
//Node temp = this.head.getNext();

//head..setNext (null); (we need to also check that there

//head = temp;

} IS something to be removed,
otherwise we get an error)

Susan > Reese — > null

30

Linked List Methods ¢ removelLast () —removes last node of LL

?7?7?

Susan ﬁ___} Reese

Sarah

% null

Linked List Methods ¢ removelast ()

1. Find the second to last node

2. Setthat node’s next valueto null

head

— removes last node of LL

Sarah

4 null

Susan —____%>

Reese

— > null

Linked List Methods ¢ removelast ()

1. Find the second to last node

2. Setthat node’s next valueto null

head

— removes last node of LL

public void removelLast() {

Node current = head;

while(current.getNext().getNext() != null) {

current = current.getNext();

}

current.setNext(null);

Sarah

4 null

Susan ﬁ__.>

Reese

4 null

33

Linked List Methods

1. Find the second to last node

* removelast ()

2. Setthat node’s next valueto null

— removes last node of LL

public void removelLast() {

Node current = head;

while(current.getNext().getNext() != null) {

current = current.getNext();

4 null

gurrent.setNext(null);
}
head Will this always work? Sarah

34

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

