
CSCI 132:
Basic Data Structures and Algorithms

Time Complexity, Big-O

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/spring2023/132/main.html

2

Lab 6 due tomorrow @ 11:59 PM

Program 2 due Friday October 13th

No Lab next week

Midterm Exam Wednesday

→Review/Study Guide has been posted

Optional Help session on Friday (no lecture)

Announcements

3

Suppose you are moving across the country. You’ve contracted a builder

to build you a brand-new house. You are trying to plan which date you

should put all your belongings in the truck and move to the new house

across the country. You ask the builder the following question:

How long will it take to finish building the house?

4

Suppose you are moving across the country. You’ve contracted a builder

to build you a brand-new house. You are trying to plan which date you

should put all your belongings in the truck and move to the new house

across the country. You ask the builder the following question:

How long will it take to finish building the house?

The builder is unsure exactly when he will be done, but he offers the

following answers in an enclosed envelope. You can only pick one.

5

Suppose you are moving across the country. You’ve contracted a builder

to build you a brand-new house. You are trying to plan which date you

should put all your belongings in the truck and move to the new house

across the country. You ask the builder the following question:

How long will it take to finish building the house?

The builder is unsure exactly when he will be done, but he offers the

following answers in an enclosed envelope. You can only pick one.

The fastest time he
has completed a
house in the past

6

Suppose you are moving across the country. You’ve contracted a builder

to build you a brand-new house. You are trying to plan which date you

should put all your belongings in the truck and move to the new house

across the country. You ask the builder the following question:

How long will it take to finish building the house?

The builder is unsure exactly when he will be done, but he offers the

following answers in an enclosed envelope. You can only pick one.

The fastest time he
has completed a
house in the past

The slowest time he
has completed a
house in the past

7

Suppose you are moving across the country. You’ve contracted a builder

to build you a brand-new house. You are trying to plan which date you

should put all your belongings in the truck and move to the new house

across the country. You ask the builder the following question:

How long will it take to finish building the house?

The builder is unsure exactly when he will be done, but he offers the

following answers in an enclosed envelope. You can only pick one.

The fastest time he
has completed a
house in the past

The slowest time he
has completed a
house in the past

The average time it
takes him to

complete a house

8

Suppose you are moving across the country. You’ve contracted a builder

to build you a brand-new house. You are trying to plan which date you

should put all your belongings in the truck and move to the new house

across the country. You ask the builder the following question:

How long will it take to finish building the house?

The builder is unsure exactly when he will be done, but he offers the

following answers in an enclosed envelope. You can only pick one.

The fastest time he
has completed a
house in the past

The slowest time he
has completed a
house in the past

The average time it
takes him to

complete a house

“Best case scenario” “Worst case scenario” Average

(We will also assume they won’t break any records for fastest/slowest time)

9

Suppose you are moving across the country. You’ve contracted a builder

to build you a brand-new house. You are trying to plan which date you

should put all your belongings in the truck and move to the new house

across the country. You ask the builder the following question:

How long will it take to finish building the house?

The builder is unsure exactly when he will be done, but he offers the

following answers in an enclosed envelope. You can only pick one.

The slowest time he
has completed a
house in the past

“Worst case scenario”

If we select this option, we are guaranteed

a date that the house will be finished by

(The house might be empty for a few days, but that’s much better than

having to stay in a hotel until the house is ready)

10

The running time of an algorithm is the time it takes for

an algorithm to completely run from start to finish

There are a few ways we can measure running time:

1.

11

The running time of an algorithm is the time it takes for

an algorithm to completely run from start to finish

There are a few ways we can measure running time:

1. Time (seconds, nanoseconds, minutes, days, etc)

12

The running time of an algorithm is the time it takes for

an algorithm to completely run from start to finish

There are a few ways we can measure running time:

1. Time (seconds, nanoseconds, minutes, days, etc)

Practical, but the hardware of the computer greatly affects the time

needed

We need a way to measure running time that is independent from the

hardware the computer has

13

The running time of an algorithm is the time it takes for

an algorithm to completely run from start to finish

There are a few ways we can measure running time:

1. Time (seconds, nanoseconds, minutes, days, etc)

2. Number of operations required to complete algorithm.

14

The running time of an algorithm is the time it takes for

an algorithm to completely run from start to finish

There are a few ways we can measure running time:

1. Time (seconds, nanoseconds, minutes, days, etc)

2. Number of operations required to complete algorithm.

To measure the running time of an algorithm, we will count the

number of operations the algorithm performs, and look at how

these operations scale as the input increases

15

The running time of an algorithm is the time it takes for

an algorithm to completely run from start to finish

There are a few ways we can measure running time:

1. Time (seconds, nanoseconds, minutes, days, etc)

2. Number of operations required to complete algorithm.

To measure the running time of an algorithm, we will count the

number of operations the algorithm performs, and look at how

these operations scale as the input increases

When we describe the running time of an algorithm, we will represent it using Big-O Notation

16

A primitive operation is an operation that has a constant execution time

17

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable int N = 3;

18

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable

• Performing an arithmetic operation

int N = 3;
a = a + 3 * 12

19

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable

• Performing an arithmetic operation

• Comparing two numbers/values

int N = 3;
a = a + 3 * 12
if(n >= i)

20

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable

• Performing an arithmetic operation

• Comparing two numbers/values

• Accessing an element in an array (by index)

int N = 3;
a = a + 3 * 12
if(n >= i)
i = arr[3]

21

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable

• Performing an arithmetic operation

• Comparing two numbers/values

• Accessing an element in an array (by index)

• Calling a method

int N = 3;
a = a + 3 * 12
if(n >= i)
i = arr[3]
e.print2Darray(array);

22

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable

• Performing an arithmetic operation

• Comparing two numbers/values

• Accessing an element in an array (by index)

• Calling a method

• Returning from a method

int N = 3;
a = a + 3 * 12
if(n >= i)
i = arr[3]
e.print2Darray(array);
return

23

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable

• Performing an arithmetic operation

• Comparing two numbers/values

• Accessing an element in an array (by index)

• Calling a method

• Returning from a method

• Printing out a value

int N = 3;
a = a + 3 * 12
if(n >= i)
i = arr[3]
e.print2Darray(array);
return
System.out.println(“Hi”)

24

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

25

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

The number of operations this algorithm executes varies because…

26

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

The number of operations this algorithm executes varies S will be at different locations

27

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

This is a primitive operation, lets count how many times this operation is executed given some input

28

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 5

29

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 5

30

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 5

31

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 5

32

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 5

33

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 5

34

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 5

4 operations (5 operations including the return)

35

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = ???

What is the best-case scenario for this algorithm (when would this have the shortest running time) ?

36

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 4

What is the best-case scenario for this algorithm (when would this have the shortest running time) ?

37

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = ?

What is the worst-case scenario for this algorithm (when would this have the longest running time) ?

38

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

This algorithm finds the location (index) of an integer S in an array of size N

4 6 3 5 1 8 2 9 7 10

S = 11

What is the worst-case scenario for this algorithm (when would this have the longest running time) ?

39

R
u

n
n

in
g

 T
im

e

Input Instance

40

R
u

n
n

in
g

 T
im

e

Input Instance

Best Case

Scenario

Worst Case

scenario

41

R
u

n
n

in
g

 T
im

e

Input Instance

Best Case

Scenario

Worst Case

scenario

Average

42

In computer science (and this class in particular), we will be focusing

on stating running time in terms of worst-case scenario

43

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

To compute the running time of this algorithm, we will go

line-by-line and state the running time of each operation

(worst-case scenario)

At the end, add everything up to get the total running time

44

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

45

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

Worse case scenario, this for loop will run N times (N = size of the array)

N

46

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

47

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N
1

This is a primitive operation, so it will always run in constant time

48

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N
1

49

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N
1

1

50

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N
1

1

1

51

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N
1

1

1

This whole block consists of only

primitive operation, so we will group

everything together and call it one

single primitive operation

52

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

1

1

Total Running Time =

53

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

1

1

Total Running Time = N * 1 + 1

The if statement is inside the for loop, so we must multiply it by N

(number of time the for loop runs)

54

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

1

1

Total Running Time = N + 1

55

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

1

1

Total Running Time = N + 1

O(N + 1)

“Big-Oh”

Big-O = Running Time in

terms of worst-case scenario

56

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

1

1

Total Running Time = N + 1

O(N + 1) where N = Size of Array

“Big-Oh”

57

Big O Formal Definition

Let ƒ(n) and g(n) be functions mapping positive integers to positive real numbers

ƒ(n) is O(g(n)) if there is a real constant c > 0 and an integer constant n0 ≥ 1 such that

ƒ(n) ≤ c · g(n), for all n ≥ n0

58

Big O Formal Definition

Let ƒ(n) and g(n) be functions mapping positive integers to positive real numbers

ƒ(n) is O(g(n)) if there is a real constant c > 0 and an integer constant n0 ≥ 1 such that

ƒ(n) ≤ c · g(n), for all n ≥ n0

Past a certain spot, g(n) dominates f(n) within a multiplicative constant

59

Big O Formal Definition

Let ƒ(n) and g(n) be functions mapping positive integers to positive real numbers

ƒ(n) is O(g(n)) if there is a real constant c > 0 and an integer constant n0 ≥ 1 such that

ƒ(n) ≤ c · g(n), for all n ≥ n0

Past a certain spot, g(n) dominates f(n) within a multiplicative constant

O -notation provides an upper bound on some function ƒ(n)

60

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

61

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

x2 + x + 10

62

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

x2 + x + 10

When X is really really big, these factors

don’t contribute very much at all

63

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

x2 + x + 10

When X is really really big, these factors

don’t contribute very much at all
x2 is the dominating factor, so we can

drop everything else

∈ O(x2)

64

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

x2 + x + 10

When X is really really big, these factors

don’t contribute very much at all

∈ O(x2) x2 + x + 10 = O(x2)

Quick warning on notation

∈=

65

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

????

66

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

1

1

Total Running Time = N + 1

O(N + 1) where N = Size of Array

O(N) where N = Size of Array

67

68

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Create a new array that is
one spot larger

Fill new array with contents
of old array

Add new value to array and
update reference variable

What is the running time of this algorithm?

69

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Create a new array that is
one spot larger

Fill new array with contents
of old array

Add new value to array and
update reference variable

What is the running time of this algorithm?

We will find the time complexity for each operation!

70

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time =

???

71

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n

O(n)

72

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n

O(n)

73

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n

O(n)

O(n)

74

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1

O(n)

O(n)

O(1)

75

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1

O(n)

O(n)

O(1)

When do we add? When do multiply?

Sequential Operations = Add

Nested Operations (in a loop) = Multiply

76

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1

O(n)

O(n)

O(1)

77

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1 + 1

O(n)

O(n)

O(1)

O(1)

78

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1 + 1 + 1

O(n)

O(n)

O(1)

O(1)

O(1)

79

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1 + 1 + 1 + 1

O(n)

O(n)

O(1)

O(1)

O(1)

O(1)

80

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1 + 1 + 1 + 1

 = 2n + 3

O(n)

O(n)

O(1)

O(1)

O(1)

O(1)

81

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1 + 1 + 1 + 1

 = 2n + 3

O(n)

O(n)

O(1)

O(1)

O(1)

O(1)

O(2n) where n is the size of the array

82

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

In Big-O, we can drop multiplicative constants

83

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1 + 1 + 1 + 1

 = 2n + 3

O(n)

O(n)

O(1)

O(1)

O(1)

O(1)

O(2n) where n is the size of the array → O(n) where n is the size of the array

When we write algorithms,
we should still be aware of

these coefficients

84

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

What is the running time of this algorithm?

85

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time =

86

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 +

O(1)

87

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1

O(1)

O(1)

88

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1 + n

O(1)

O(1)
O(n)

89

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1 + n * 1

O(1)

O(1)
O(n)

O(1)

90

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1 + n * 1 + 1

O(1)

O(1)
O(n)

O(1)

O(1)

91

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1 + n * 1 + 1

 = n + 3

O(1)

O(1)
O(n)

O(1)

O(1)

92

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1 + n * 1 + 1

 = n + 3

O(1)

O(1)
O(n)

O(1)

O(1)

O(n) where n is ????∈

93

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1 + n * 1 + 1

 = n + 3

O(1)

O(1)
O(n)

O(1)

O(1)

O(n) where n is the number of nodes in the LL∈

94

Algorithm Analysis: Adding Node to end of Singly Linked List (no tail pointer)

public void addToBack(Node newNode) {
 if(head == null) {
 head = newNode;
 }
 else {
 Node current = head;
 while(current.getNext() != null) {
 current = current.getNext();
 }
 current.setNext(newNode);
 }
}

Total Running Time = 1 + 1 + n * 1 + 1

 = n + 3

O(1)

O(1)
O(n)

O(1)

O(1)

O(n) where n is the number of nodes in the LL∈

“Worst case scenario, we have to go through all

the nodes in the LL to add something at the end”

95

Algorithm Analysis: Adding Node to end of Singly Linked List (tail pointer)

public void addToBack(Node newNode) {

 if(head == null && tail == null) {
 head = newNode;
 tail = newNode;
 }
 else {
 tail.setNext(newNode);
 tail = newNode;
 }

}

What is the running time of this algorithm?

96

Algorithm Analysis: Adding Node to end of Singly Linked List (tail pointer)

public void addToBack(Node newNode) {

 if(head == null && tail == null) {
 head = newNode;
 tail = newNode;
 }
 else {
 tail.setNext(newNode);
 tail = newNode;
 }

}

Total Running Time =

O(1)

97

Algorithm Analysis: Adding Node to end of Singly Linked List (tail pointer)

public void addToBack(Node newNode) {

 if(head == null && tail == null) {
 head = newNode;
 tail = newNode;
 }
 else {
 tail.setNext(newNode);
 tail = newNode;
 }

}

Total Running Time =

O(1)

O(1)

98

Algorithm Analysis: Adding Node to end of Singly Linked List (tail pointer)

public void addToBack(Node newNode) {

 if(head == null && tail == null) {
 head = newNode;
 tail = newNode;
 }
 else {
 tail.setNext(newNode);
 tail = newNode;
 }

}

Total Running Time = 1 + 1 + 1

O(1)

O(1)

O(1)

99

Algorithm Analysis: Adding Node to end of Singly Linked List (tail pointer)

public void addToBack(Node newNode) {

 if(head == null && tail == null) {
 head = newNode;
 tail = newNode;
 }
 else {
 tail.setNext(newNode);
 tail = newNode;
 }

}

Total Running Time = 1 + 1 + 1

O(1)

O(1)

O(1)

∈ O(1)

“The number of operations required

for this algorithm is the same no

matter the input”

100

Algorithm Analysis: Adding Node to end of Singly Linked List (tail pointer)

public void addToBack(Node newNode) {

 if(head == null && tail == null) {
 head = newNode;
 tail = newNode;
 }
 else {
 tail.setNext(newNode);
 tail = newNode;
 }

}

Total Running Time = 1 + 1 + 1

O(1)

O(1)

O(1)

∈ O(1)

“The number of operations required

for this algorithm is the same no

matter the input”

3,000,000 Nodes = 3 operations, 10 Nodes = 3 operations

101

Algorithm Analysis: Printing out funky number triangle

print_number_triangle(9);print_number_triangle(7);print_number_triangle(4);

102

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

print_number_triangle(9);print_number_triangle(7);print_number_triangle(4);

103

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

Total Running Time =

O(n)

104

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

Total Running Time =

O(n)
O(n)

105

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

Total Running Time =

O(n)
O(n)

O(1)

106

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

Total Running Time =

O(n)
O(n)

O(1)

O(1)

107

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

Total Running Time = N * ((N * 1) * 1)

O(n)
O(n)

O(1)

O(1)

108

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

Total Running Time = N * ((N * 1) * 1)

 = N2

O(n)
O(n)

O(1)

O(1)

109

Algorithm Analysis: Printing out funky number triangle

public static void print_number_triangle(int n) {
 for(int i = 1; i < n + 1; i++) {
 for(int j = 0; j < i; j++) {
 System.out.print(i);
 }
 System.out.println();
 }
}

Total Running Time = N * ((N * 1) * 1)

 = N2

O(n)
O(n)

O(1)

O(1)

∈ O(n2)

110

111

“Polynomial Time”

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111

