
CSCI 132:
Basic Data Structures and Algorithms

Midterm Review

Reese Pearsall
Fall 2023
https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

2

No Lab this week

Midterm Exam Wednesday

Program 2 due Friday 10/13 @ 11:59

Announcements

3

Declaring Variables

Primitive Data Types
• int

• double

• boolean

• char

• float

Non-Primitive Data Types
• String

int i = 5;

int x;

int num = 125;

char grade = “A”;

boolean flag = true;

Valid Variable Declaration

When we declare a variable, we must define

the datatype as well

Invalid Variable Declaration
String s = “Reese”;

String last_name = “Pearsall”;

System.out.println(s + last_name)

4

Operators
• + (Addition)

• - (Subtraction)

• * (Multiplication)

• / (Division)

• % (Modulo)

• + (String concatenation)

• ++ (Increment)

• -- (Decrement)

int x, y, answer;

x= 2;

y = 3;

answer = x + y;

Using the plus operator (+) between two values that

are Strings will result in String concatenation

String x = “hi ”;

String y = “there”;

System.out.println(x + y);

>> hi there

int counter = 0;

System.out.println(counter);

counter++;

System.out.println(counter);

counter++;

System.out.println(counter);

>> 0

 1

 2

Increment operator (++) will add 1 to a variable

5

Student.Java

StudentDemo.Java

Instance fields of our Student Class

private means they can not be directly accessed outside of the class

6

Student.Java

StudentDemo.Java

This is the constructor, the special method that creates our objects

Each of our “blueprints” needs a constructor

7

Student.Java

StudentDemo.Java

When we use the new keyword, it will invoke our constructor

8

Student.Java

StudentDemo.Java

student1

“Charles”

“Computer Science”

75

3.5

“Unknown”

name

major

num_of_credits

gpa

year

9

StudentDemo.Java

Student.Java

(instance fields and constructor go here)
Name of method

This method returns a String

This method is public (other classes can use it)

The this keyword refers to the object that this method was called on (student1)

(return student1’s name attribute)

10

StudentDemo.Java

Student.Java

Example: A student is allowed to register for CSCI 476 if they have a GPA greater than 2.0, and

if they are a Junior or Senior

We can check one of two

conditions is true using the or

operator (||)

(we do not have the or keyword

in Java)

// check the first condition (Alternatively, we could use an && here)

allowToRegister

11

StudentDemo.Java

Student.Java

We can check multiple conditions

using the and operator (&&)

(we do not have the and keyword

in Java)

12

int[] test_scores = {99, 81, 65, 46};

Arrays are a collection of data

→ Once initialized, are fixed in size

→ Can only hold one data type

Declaring an array and giving it a value

String[] names = new String[5];

Declaring an array allocating 5 empty spots (we need to fill them later)

99 81 65 46test_scores

names null null null null null

>> 65

13

For loops can be used to iterate across an array.

Two ways:

1. Iterate by index

2. Iterate by element

Both will give you the
exact same output…

14

While loops can be used to iterate if a condition is true.

1. Check Condition

2. If condition is true, execute body of loop

3. Repeat

You do have to worry about the possibility of

infinite loops….

15

1. Execute body of loop

2. Check condition

3. Repeat

The do/while loop will always execute the body of the loop once, and then check the condition

!!! You are guaranteed at least one execution of the loop body

16

public class ReferencesDemo {
 public static void main(String[] args) {

 Person person1 = new Person("Jim Bob", 44);
 Person person2 = new Person("Sally", 28);

 Person person3 = person1;
 }
}

Suppose we create a new reference

variable and link it to an existing object

person3 is now pointing to same object

and person1
name: “Jack”

age: 44

name: “Sally”

age: 28

person1

person2

In this method call, this is referencing the person1 object

person3

17

public class ReferencesDemo {
 public static void main(String[] args) {

 Person person1 = new Person("Jim Bob", 44);
 Person person2 = new Person("Sally", 28);

 Person person3 = person1;
 person1.changeName("test");
 }
}

Suppose we create a new reference

variable and link it to an existing object

person3 is now pointing to same object

and person1

name: “test”

age: 44

person1

Any changes to person1 will also update person3 (and vice versa)

person3

System.out.println(person1.getName()) → “test”

System.out.println(person3.getName()) → “test”

18

Inheritance is a mechanism in Java that allows for a

class to acquire instance fields and methods from

another class

In Java, we use the extends keyword to indicate that a class is inheriting from another

public class Programmer extends Employee {
}

The Programmer class inherits from the Employee class

19

public class Programmer extends Employee {

private String programming_language;

public Programmer(String name, int id, int salary, String lan) {
 super(name,id,salary);
 this.programming_language = lan;
}

public String getLanguage() {
 return this.programming_language;
}

}

Programmer.java
Employee.java

Programmer reese = new Programmer("Reese Pearsall", 1234, 90000, "Python");
System.out.println(reese.getName());

getName() is not defined in the Programmer class, but because the Programmer class

inherits from the Employee class, the reese object has access to the getName() method

Inherited!

public class Employee {

 private String name;
 private int emp_id;
 private int salary;

 public Employee(String name, int id, int salary) {
 this.name = name;
 this.emp_id = id;
 this.salary = salary;
 }

 public String getName() {
 return this.name;
 }

20

public class Programmer extends Employee {

private String programming_language;

public Programmer(String name, int id, int salary, String lan) {
 super(name,id,salary);
 this.programming_language = lan;
}

public String getLanguage() {
 return this.programming_language;
}

}

Programmer.java
Employee.java

private instance fields and methods are not inherited

Instead, we can use the protected keyword

public class Employee {

 private String name;
 private int emp_id;
 private int salary;

 public Employee(String name, int id, int salary) {
 this.name = name;
 this.emp_id = id;
 this.salary = salary;
 }

 public String getName() {
 return this.name;
 }

21

Salesperson Accountant Programmer

ProgrammerIntern

name (String)

emp_id (int)

salary (int)

getName()

getID()

getSalary()

commission (int)

getCommission()

cpa_grade (char)

getCpaGrade()

language (String)

getLanguage()

school (String)

getSchool()

Java Inheritance

Hierarchy Example

A ProgrammerIntern object has

access to the following instance

fields and methods:

• name

• emp_id

• salary

• language

• school

• getName()

• getID()

• geSalary()

• getLanguage()

• getSchool()

22

Static methods are methods in Java that can be called

without creating an object of a class

public class StaticDemo {
 public static void main(String[] args) {
 AnotherClass.funMethod("Hello");
 }
}

If the static method is in another class, we can access it by giving
the class name (AnotherClass)

Once again, I do not need to create an AnotherClass object to

call this static method

However, now objects are no longer an implicit argument to this
method (cant use this anymore)

StaticDemo.java AnotherClass.java

public class AnotherClass {
 public static void funMethod(String arg)
 {
 System.out.println(arg);
 }
}

23

Abstract Classes are restricted classes that cannot be

used to create objects. To access it, it must be inherited

from another class.

public abstract class Employee {
 …

}

Employee e = new Employee("Sally", 4444, 123456);

You cannot create instances of an abstract class.

Accountant kevin = new Accountant("Kevin Malone", 4444, 42000, 'C');

Instead, we use objects from another class that inherits from the abstract class

24

Interfaces are abstract classes that only contain

methods with no body

public interface Vehicle {
 void accelerate(int a);
 void slowdown(int a);
 void refuel(int a);
}

public class Ferrari implements Vehicle {

@Override
public void accelerate(int a) {
 …
}
@Override
public void slowdown(int a) {
 …
}
@Override
public void refuel(int a) {
}
 …
}

Now, any Class that also has the
behavior of accelerating,

slowdown, and refuel can

implement our interface, and those

classes are forced to write the body of

the methods

The code of the method body is omitted, but

that is where the programmer can put the

specific behavior of:

• how a Ferrari will accelerate

• how a Ferrari will slow down

• how a Ferrari will refuel

25

Interfaces are abstract classes that only contain

methods with no body

Why use interfaces?

Interfaces are great when you need multiple

implementations of the same behavior

It forces classes to implement X methods that might not

logically belong to them (more control)

It provides abstraction

(ie the details of how things are implemented are not revealed in

an interface)

26

Inheriting from a class Implementing an Interface

Class inherits instance

fields and methods
Class inherits methods with no

bodies

Can only inherit

from one class

Can implement

multiple interfaces

Sub class is not required

to override methods

Sub class is required to

override methods

27

Polymorphism is the ability of a class to provide

different implementations of a method, depending on the

type of object that is passed to the method.

Bird a2 = new Bird("Puffin",27.0, "North America",7400000,21.5);
Wolf b2 = new Wolf("Arctic Wolf",120.0, "North America",200000, 16);

a2.makeSound();
b2.makeSound();

The makeSound()method does something different for each object

28

Cons

• Can’t change the length

• Can only store one data type

Array Limitations

What can we do about this?

int[] myArray = {1, 2, 3};
System.out.println(Arrays.toString(myArray));

int[] newArray = new int[myArray.length + 1];
for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

// Create a new array that is one spot bigger

// Fill new array with contents of old array

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

// add new value to array

// Update reference variable

29

An ArrayList is a data structure that can hold multiple, similar values (just like an array), BUT

• Dynamic, can easily resize

• Can easily add new elements and remove elements

• Like a Python list ☺

Somebody took arrays, and made them better
• Still have indices

• Still can only store one data type

30

Java ArrayLists

import java.util.ArrayList;

We first need to remember to import it ☺

Creating a new ArrayList

ArrayList<String> mylist = new ArrayList<String>();

mylist.add("Jack");

We can add stuff to the ArrayList using the .add() method (built in method!)

System.out.println(mylist.get(2));

To access elements in the array, we use the .get() method (we cannot use the square bracket index [])

// this will print the String at index 2

mylist.remove("Eli");
mylist.remove(0);

We can remove stuff by index, or by searching for a specific element

31

Linked Lists

A Linked List is a data structure that consists of a collection of

connected nodes

Reese

Susan

Spencer

Nodes consists of data (String, int, array, etc) and a pointer to the next node

A Linked List also has a pointer to the start of the Linked List (head)

head

32

• addToFront() - adds new node to beginning of LL O(1)

• addToBack() – adds new node to end of LL O(N)

• removeFirst() – removes first node of LL O(1)

• removeLast() – removes last node of LL O(N)

• printLinkedList() – prints nodes and their data O(N)

Singly Linked List Methods (No tail)

33

Linked Lists

A Doubly Linked List keeps track of the next node and the previous node

Reese

Susan

Spencer

next

prev

null

null

prev next

prev next

prev next

head tail

34

• addToFront() - adds new node to beginning of LL O(1)

• addToBack() – adds new node to end of LL O(1)

• removeFirst() – removes first node of LL O(1)

• removeLast() – removes last node of LL O(1)

• printLinkedList() – prints nodes and their data O(N)

• insert(N) – insert node at spot N O(N)

Doubly Linked List Methods

35

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

A Circular Linked List is a linked list where the first and last node are

connected, which creates a circle

36

• addToFront() - adds new node to beginning of LL O(1)

• addToBack() – adds new node to end of LL O(1)

• removeFirst() – removes head node of LL O(1)

• removeLast() – removes tail node of LL O(1)

• printLinkedList() – prints nodes and their data O(N)

• insert(N) – insert node at spot N O(N)

Circular Doubly Linked List Methods

37

Constant

Linear

Quadratic

Exponential

Adding to front of linked list

Searching an array for a

certain element

Printing out a 2D array

Generating all possible

binary strings of length

N

Growth Rates

38

The running time of an algorithm is the time it takes for

an algorithm to completely run from start to finish

There are a few ways we can measure running time:

1. Time (seconds, nanoseconds, minutes, days, etc)

2. Number of operations required to complete algorithm.

To measure the running time of an algorithm, we will count the

number of operations the algorithm performs, and look at how

these operations scale as the input increases

When we describe the running time of an algorithm, we will represent it using Big-O Notation

39

A primitive operation is an operation that has a constant execution time

• Assigning a value to a variable

• Performing an arithmetic operation

• Comparing two numbers/values

• Accessing an element in an array (by index)

• Calling a method

• Returning from a method

• Printing out a value

int N = 3;
a = a + 3 * 12
if(n >= i)
i = arr[3]
e.print2Darray(array);
return
System.out.println(“Hi”)

40

In computer science (and this class in particular), we will be focusing

on stating running time in terms of worst-case scenario

41

Big O Formal Definition

Let ƒ(n) and g(n) be functions mapping positive integers to positive real numbers

ƒ(n) is O(g(n)) if there is a real constant c > 0 and an integer constant n0 ≥ 1 such that

ƒ(n) ≤ c · g(n), for all n ≥ n0

Past a certain spot, g(n) dominates f(n) within a multiplicative constant

O -notation provides an upper bound on some function ƒ(n)

42

Big-O
Notation used to describe the running time of an algorithm in terms of worse case scenario

Traits of Big-O-Notation:

In Big-O, we can drop non-dominant factors

In Big-O, we can drop multiplicative constants

43

Algorithm Analysis: Adding value to an Array/ArrayList

int[] newArray = new int[myArray.length + 1];

for(int i = 0; i < myArray.length; i++) {
 newArray[i] = myArray[i];
}

int new_value = 4;
newArray[myArray.length] = new_value;
myArray = newArray;

Total Running Time = n + n * 1 + 1 + 1 + 1

 = 2n + 3

O(n)

O(n)

O(1)

O(1)

O(1)

O(1)

O(2n) where n is the size of the array → O(n) where n is the size of the array

When we write algorithms,
we should still be aware of

these coefficients

44

public int find_element_in_array(int[] array, int s) {
 for(int i = 0; i < array.length; i++) {
 if(array[i] == s) {
 return i;
 }
 }
 return -1;
}

N

1

1

Total Running Time = N + 1

O(N + 1) where N = Size of Array

O(N) where N = Size of Array

45

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

