
CSCI 132:
Basic Data Structures and Algorithms

Lessons Learned so far + Intro to Stacks

Reese Pearsall
Fall 2023
https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

2

Come get your midterm exam

• Exam average was in the 80s

• Don’t stress if you didn’t do well

• Make sure I calculated your score correctly

Lab 7 and Program 3 will be posted very soon

Class Registration

→CSCI 232

→CS 145

→CSCI 215

→CSCI 246

Announcements

3

Big-O

Big-O notation is a way to describe the running-time/time

complexity of an algorithm regarding the number of

operations that are executed in the algorithm (in relation to
some input n)
• Focus on worst-case scenario, and how the algorithm scales as n gets really big

4

Big-O

Big-O notation is a way to describe the running-time/time

complexity of an algorithm regarding the number of

operations that are executed in the algorithm (in relation to
some input n)
• Focus on worst-case scenario, and how the algorithm scales as n gets really big

A very powerful computer and a very weak computer running the same algorithm

will both execute the same number of operations (the speed at which they execute

these operations will be different)

Takeaway: the asymptotic running time (the big-o running time) will be the same for each computer

5

Big-O

Big-O notation is a way to describe the running-time/time

complexity of an algorithm regarding the number of

operations that are executed in the algorithm (in relation to
some input n)
• Focus on worst-case scenario, and how the algorithm scales as n gets really big

To find the total running time of an algorithm, we calculate the running-

time of each operation in the algorithm and then add everything together

• In Big-O, we can drop non-dominant factors and multiplicative

constants (coefficients)

O(n) + O(n) + O(n): Total running time = O(3n) O(n)∈

6

Data Structures so far:

ArrayLists (Arrays) Linked Lists

7

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type Can hold multiple data types

8

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

9

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

Entire array is stored at a

contiguous spot in memory
Linked list nodes are stored at

non-contiguous spots in memory

10

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

Entire array is stored at a

contiguous spot in memory
Linked list nodes are stored at

non-contiguous spots in memory

11

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can hold one data type
• Can also store objects, which allow for multiple data types

Nodes in the linked list can hold

multiple data types

Entire array is stored at a

contiguous spot in memory

Linked list nodes are stored at

non-contiguous spots in memory

Traversing a linked list requires more work than traversing an array

12

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Can add new elements to data

structure (resizable)

Can add new elements to data

structure (resizable)

Both data structures can grow dynamically, and new elements can be

added, but they way they add new elements is drastically different

13

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Create a brand-new array, copy everything

over from old array

Update pointers

14

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Create a brand-new array, copy everything

over from old array

Update pointers

O(n)
O(1)

15

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Takeaway: Adding a new element to an ArrayList requires much more

work than adding a new element to a Linked List

16

Data Structures so far:

ArrayLists (Arrays) Linked Lists

Arrays are generally much easier to sort than Nodes in a Linked List

Arrays are more memory efficient (adding is not very memory efficient though)

If you are constantly needing to add new elements to the data

structure, using a Linked List requires much less work in the long run

17

Data Structures so far:

ArrayLists (Arrays) Linked Lists

When to use each data structure?

It depends on how you are using your data and if you know how much data you have

If you don’t know how much data you need to store, or if you are constantly

needing to add new elements to the data structure → Linked Lists

If you know how much data you need to store, and if you can add all your

data at once → Arrays/ArrayLists

18

Data Structures so far:

ArrayLists (Arrays) Linked Lists

These two data structures are implementations of a List Abstract Data Type (ADT)

ADT is a class whose behavior is defined by a set of operations and how a user interacts with it.

A list data type must be able to get an element, add an element, remove an element, etc

→ How they do these operations is up to the subclass (LL and AL)

As programmers, we use handy methods that were written by other people that

allows us to use these data structures

19

The Linked List Class

We will no longer be writing our own Linked List class, instead

we will now import the Java-provided Linked List Class

import java.util.LinkedList;

20

The Linked List Class

We will no longer be writing our own Linked List class, instead

we will now import the Java-provided Linked List Class

import java.util.LinkedList;

LinkedList<String> names = new LinkedList<String>();

The data type the

linked list will be

holding

Reference

variable for LL

21

The Linked List Class

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

The documentation describe how the LinkedList class was implemented, and all the

methods/operations we can do with the Linked List class

https://docs.oracle.com/javase/7/docs/api/java/util/LinkedList.html

22

The Linked List Class

23

A stack is a data structure that can hold data, however the

way we interact with a stack is a little bit different

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

Stack

24

A stack is a data structure that can hold data, however the

way we interact with a stack is a little bit different

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

Stack

Spencer

When only interact with the top of

the stack.

If we want to add a new element,

we must put it on the top of the

stack

25

A stack is a data structure that can hold data, however the

way we interact with a stack is a little bit different

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

Adding something to

a stack is known as

the push operation

26

A stack is a data structure that can hold data, however the

way we interact with a stack is a little bit different

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

If we want to remove

something, we must always

remove the element on the top

of the stack

27

A stack is a data structure that can hold data, however the

way we interact with a stack is a little bit different

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

Stack

Spencer
Removing an

element is known as

the pop operation

stack.pop() → Top node (spencer) is removed

28

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

We can:

• Add an element to the top of the stack (push)

• Remove the top element (pop)

29

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

30

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

31

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList

32

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList

Reese

Susan

Cosmo

Spencer

3.

Linked

List

33

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList

Reese

Susan

Cosmo

Spencer

3.

Linked

List

Which should you pick?

34

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList

Reese

Susan

Cosmo

Spencer

3.

Linked

List

Which should you pick?
• Depends on how you are using the stack

35

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList

Reese

Susan

Cosmo

Spencer

3.

Linked

List

Which should you pick?
• If you know how big the stack

needs to be

 → Array

• If you don’t know how big the stack

needs to be

 → Linked List

36

Reese

Susan

Cosmo

Elements of

Data Structure

Top of

StackSpencer

A stack is a data structure that can hold data, and follows

the last in first out (LIFO) principle

Our stack data structure

needs to keep track of a

few things

1. Something to hold our

stack elements

(Array/LinkedList)

2. Something that points

the current top element

of the stack

3. The size of the stack

37

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

38

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

The bottom of the stack will

always be at index 0, and grows

towards the higher indices

When the stack is empty, the index of the bottom

of the stack, and the index of the top of the stack

will be the same

top_of_stack = 0

String[] data = new String[8]

The size of the stack will start at 0 size = 0
Top of Stack

39

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 0

String[] data = new String[8]

size = 0

Top of Stack

Stack Instance Fields

public void push(newElement){

}

40

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 0

String[] data = new String[8]

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

41

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 0

String[] data = new String[8]

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
 top_of_stack++;
 place newElement at index top_of_stack
 size++

42

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 0

String[] data = new String[8]

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
 top_of_stack++;
 place newElement at index top_of_stack
 size++

Susan

stack.push(“Susan”)

43

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
top_of_stack++;

 place newElement at index top_of_stack
 size++

Susan

stack.push(“Susan”)

44

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
 top_of_stack++;

place newElement at index top_of_stack
 size++

stack.push(“Susan”)

45

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
 top_of_stack++;
 place newElement at index top_of_stack

size++

stack.push(“Susan”)

46

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
 top_of_stack++;
 place newElement at index top_of_stack
 size++

Cosmo

stack.push(“Cosmo”)

47

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 2

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
 top_of_stack++;
 place newElement at index top_of_stack
 size++

Cosmo

stack.push(“Cosmo”)

48

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Cosmo

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 2

String[] data = new String[8]

size = 3

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
 place newElement at current top_of_stack
 size++

if stack if full:
 return

else:
 top_of_stack++;
 place newElement at index top_of_stack
 size++

stack.push(“Cosmo”)

49

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Cosmo

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 2

String[] data = new String[8]

size = 3

Top of Stack

Stack Instance Fields

public void pop(){

}

The pop method will always

remove the element on the

top of the stack

50

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Cosmo

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 2

String[] data = new String[8]

size = 3

Top of Stack

Stack Instance Fieldspublic void pop(){

}

if stack is empty:
 return

Set index top_of_stack to be null
top_of_stack--
size--

stack.pop()

51

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 2

String[] data = new String[8]

size = 3

Top of Stack

Stack Instance Fieldspublic void pop(){

}

if stack is empty:
 return

Set index top_of_stack to be null
top_of_stack--
size--

stack.pop()

52

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 3

Top of Stack

Stack Instance Fieldspublic void pop(){

}

if stack is empty:
 return

Set index top_of_stack to be null
top_of_stack--
size--

stack.pop()

53

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fieldspublic void pop(){

}

if stack is empty:
 return

Set index top_of_stack to be null
top_of_stack--
size--

stack.pop()

54

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fieldspublic void pop(){

}

if stack is empty:
 return

Set index top_of_stack to be null
top_of_stack--
size--

Note: This method does not return the element that was
removed, however there may be times where the pop()
method returns the element that got removed

55

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fieldspublic String peek(){

}

The peek()method returns the

element that is currently on the top

of the stack

56

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fieldspublic String peek(){

}

The peek()method returns the

element that is currently on the top

of the stack

If stack is not empty:
 return data[top_of_stack]

57

Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

top_of_stack = 1

String[] data = new String[8]

size = 2

Top of Stack

Stack Instance Fieldspublic boolean isEmpty(){

}

The isEmpty()method returns a

boolean: true if the stack is empty,

false if the stack is not empty

if size == 0:
 return true

 else:
 return false

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

