
CSCI 132:
Basic Data Structures and Algorithms

Queues (Array Implementation (the better way))

Reese Pearsall
Fall 2023
https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

2

Announcements

Lab 8 due tomorrow @ 11:59 PM

→Using the code today, it should be

pretty easy

Program 3 due Wednesday 11/1

NO CLASS ON FRIDAY AND

MONDAY

Things to do while Reese is gone:

- Submit lab 8

- Work on program 3

3

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

Once again, we need a data structure

to hold the data of the queue

• Linked List Array

Elements get added to the Back of

the Queue.

Elements get removed from the
Front of the queue

4

public void dequeue() {
 if(this.size == 0) {
 System.out.println("empty...");
 return;
 }
 else {

for (int i = 0; i < rear; i++) {
this.data[i] = this.data[i + 1];

}
 if(rear < capacity) {
 this.data[rear] = null;
 }
 rear--;
 this.size--;
 }
}

This algorithm works fine, but

the issue is that shifting data

can be costly

(think about if this queue has

1000000 things in it→ we must

shift 999999 elements!)

O(n)

We need a better algorithm that runs in

constant time for enqueuing and

dequeuing

5

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

Order
John

Order
Pam

We are going to

make use of the

modulus (%)

operator !

10 % 6 = 4

3 % 6 = 3

6 % 6 = 0

6

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

Order
John

Order
Pam

Let’s enqueue

Here is the formula for

determining where to insert the

new element

insert_spot = (front + size) % 6

7

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Pam

Let’s enqueue

Here is the formula for

determining where to insert the

new element

insert_spot = (front + size) % 6

Order
Todd

(0 + 4) % 6 = Insert at spot 4

8

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Pam

Let’s enqueue

Here is the formula for

determining where to insert the

new element

insert_spot = (front + size) % 6Order
Todd

9

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Tom

Order
Jane

capacity = 6

size = 4

front = 0

insert_spot = 4

Order
John

Order
Pam

Let’s dequeue

data[front] = null

Order
Todd

10

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Jane

capacity = 6

size = 4

front = 1

insert_spot = 4

Order
John

Order
Pam

Let’s dequeue

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (0 + 1) % 6 = 1

11

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

Order
Jane

capacity = 6

size = 4

front = 1

insert_spot = 4

Order
John

Order
Pam

Let’s dequeue (again)

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (0 + 1) % 6 = 1

12

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 3

front = 2

insert_spot = 4

Order
John

Order
Pam

Let’s dequeue (again)

data[front] = null

Order
Todd

front = (front + 1) % 6

move the front pointer to the next element

= (1 + 1) % 6 = 2

13

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 3

front = 2

insert_spot = 5

Order
John

Order
Pam

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

insert_spot = (2 + 3) % 6

5%6 = 5

14

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 5

Order
John

Order
Pam

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

insert_spot = (2 + 3) % 6

5%6 = 5

15

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Pam

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

(2 + 4) % 6 = 0

Order
Jin

16

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Pam

Let’s enqueue (again)

Order
Todd

Order
Sam

insert_spot = (front + size) % 6

(2 + 4) % 6 = 0

Order
Jin

The modulus operator

allows us to “wrap around”

in our array!

17

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 2

insert_spot = 0

Order
John

Order
Pam

Let’s dequqe (again)

Order
Todd

Order
Sam

Order
Jin

The modulus operator

allows us to “wrap around”

in our array!

data[front] = null

front = (front + 1) % 6

18

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 4

front = 3

insert_spot = 0

Order
Pam

Let’s dequqe (again)

Order
Todd

Order
Sam

Order
Jin

The modulus operator

allows us to “wrap around”

in our array!

data[front] = null

front = (front + 1) % 6

(2+1) % 6 = 3

19

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 2

front = 5

insert_spot = 0

Let’s dequqe (again)

Order
Sam

Order
Jin

data[front] = null

front = (front + 1) % 6

20

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 2

front = 5

insert_spot = 0

Let’s dequqe (again)

Order
Sam

Order
Jin

data[front] = null

front = (front + 1) % 6

Front = (5 + 1) % 6 = 0

21

A Queue is a data structure that holds data, but

operates in a First-in First-out (FIFO) fashion

0 1 2 3 4 5

capacity = 6

size = 1

front = 0

insert_spot = 0

Let’s dequqe (again)

Order
Jin

data[front] = null

front = (front + 1) % 6

Front = (5 + 1) % 6 = 0

22

23

public void printQueue() {
 int start = front;
 int counter = 1;
 int n = 0;
 while(n != this.size) {
 System.out.println(counter + ". " + this.data[start].getName());
 start = (start+1) % this.data.length;
 counter++;
 n++;
 }
}

This method will print out the queue in the correct order (there is probably a better way to write this)

The while loop stops once we’ve printed all N elements in the queue

24

Queue Runtime Analysis

Linked List Array

Creation

Enqueue

Dequeue

Peek

Print Queue

25

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue

Dequeue

Peek

Print Queue

O(1)

O(n), n = | array |

26

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue

Dequeue

Peek

Print Queue

27

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue

Peek

Print Queue

O(1)
O(1)

O(1)

O(1)

O(1)

O(1)
O(1)

O(1)

28

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue

Peek

Print Queue

29

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek

Print Queue

O(1)

O(1)

O(1)

O(1)

30

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek

Print Queue

return this.orders.getFirst() return this.orders[front]

31

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue

return this.orders.getFirst() return this.orders[front] O(1) O(1)

32

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue

33

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue O(n) O(n)

O(1)
O(n) O(n)

O(1)
O(1)

O(1)

O(1)
O(1)

O(1)

n = # of elements in queue

n = # of elements in queue

34

Queue Runtime Analysis

Linked List Array

Creation O(1) O(n)

Enqueue O(1) O(1)

Dequeue O(1) O(1)

Peek O(1) O(1)

Print Queue O(n) O(n)

w/ Array w/ Linked List

Creation O(n) O(1)

Push() O(1) O(1)

Pop() O(1) O(1)

peek() O(1) O(1)

Print() O(n) O(n)

Stack Runtime Analysis

Takeaway: Adding and

removing elements from a

stack runs in constant time
(O(1))

Takeaway: Adding and

removing elements from a

queue runs in constant
time (O(1))

(FIFO)

(LIFO)

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

