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Announcements

Program 5 and Lab 12 will be 

posted very soon (sorry)

hope you are all doing well
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Quick Sort is a sorting algorithm that works by partitioning an array around a certain 

element in the array, called a pivot. This is a recursive method that then sorts the 

sections of the array to the left of the pivot, and to the right of the pivot.

Quick sort is a Divide and Conquer algorithm, which involves dividing the 

problem into smaller sub-problems (divide), recursively solving the smaller 

problems (conquer), and combining the sub problems to get the final solution 

for the original problem
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Quick sort is rather complex. I don’t expect you to memorize the code, and if 

you don’t fully understand the code, that is fine!

You should, however, be able to describe how quick sort works from a 

high level, and be able to draw out the steps if given an example array

You should also know the time complexity 

of the sorting algorithms that we talk about
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8 2 4 7 1 3 9 6 5

The first step of Quick Sort is to select a pivot, and to get the pivot sorted 

to is correct position  

→ This step is known as partitioning
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8 2 4 7 1 3 9 6 5

The first step of Quick Sort is to select a pivot, and to get the pivot sorted 

to is correct position  

→ This step is known as partitioning

There are many ways to select a pivot, but to keep things simple, 

the last element of the array will be the pivot

pivot
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8 2 4 7 1 3 9 6 5

pivot

We are going to define two pointers i and j, that will help us get the pivot 

sorted correctly
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8 2 4 7 1 3 9 6 5

pivot

j will be defined to be the starting point of the array (0), 

and i will be defined to be (j-1)

i j
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8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot
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8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot
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8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

2 is less than 5, so we increase i and then swap!
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8 2 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

2 is less than 5, so we increase i and then swap!
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2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

2 is less than 5, so we increase i and then swap!
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2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

4 is less than 5, so we increase i and then swap!
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2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

4 is less than 5, so we increase i and then swap!
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2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

4 is less than 5, so we increase i and then swap!
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2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1



22

2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 1 7 8 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 1 7 8 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 1 7 8 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1



29

2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1
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2 4 1 3 8 7 9 6 5

pivoti j

Once j reaches the pivot, we will increase i by 1, and 

then swap the pivot with the element located at index i
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2 4 1 3 8 7 9 6 5

pivoti j

Once j reaches the pivot, we will increase i by 1, and 

then swap the pivot with the element located at index i
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2 4 1 3 5 7 9 6 8

pivoti j

Once j reaches the pivot, we will increase i by 1, and 

then swap the pivot with the element located at index i
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2 4 1 3 5 7 9 6 8

pivoti j

Once j reaches the pivot, we will increase i by 1, and 

then swap the pivot with the element located at index i

???
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2 4 1 3 5 7 9 6 8

pivoti j

Once j reaches the pivot, we will increase i by 1, and 

then swap the pivot with the element located at index i

Our pivot is now in the correct spot!

Everything to the left is less than the pivot, 

everything to the right is greater than the pivot
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2 4 1 3 5 7 9 6 8

This step is known as partitioning 
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2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array 
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2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array 

2 4 1 3 7 9 6 8quick_sort(                            )  quick_sort(                           )  
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2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array 

2 4 1 3 7 9 6 8quick_sort(                            )  quick_sort(                           )  

Unlike Merge Sort, these are not new arrays, these are just “sections” of the original array
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2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array 

2 4 1 3 7 9 6 8quick_sort(                            )  quick_sort(                           )  

Unlike Merge Sort, these are not new arrays, these are just “sections” of the original array

Due to how we call our recursive methods, we will always prioritize the “left tree” of the array
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2 4 1 3 5 7 9 6 8

2 4 1 3quick_sort(                            )  

Now we partition this section!
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2 4 1 3 5 7 9 6 8

2 4 1 3quick_sort(                            )  

pivoti j
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2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 1 4 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 1 4 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 1 4 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 1 3 4

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located 

at index i and j

If not, increase j by 1
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2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4
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2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4

pivot
i j
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2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4

pivot
i j
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2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4

pivoti j
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2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

pivoti j
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2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4
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2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

2

If the size of our “array section” is 1, then it’s already sorted!
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2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

2

If the size of our “array section” is 1, then it’s already sorted!
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2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

If the size of our “array section” is 1, then it’s already sorted!
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2 4 1 3 5 7 9 6 8

1 2 3 4

4

If the size of our “array section” is 1, then it’s already sorted!
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2 4 1 3 5 7 9 6 8

1 2 3 4

4

If the size of our “array section” is 1, then it’s already sorted!
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2 4 1 3 5 7 9 6 8

1 2 3 4

If the size of our “array section” is 1, then it’s already sorted!
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1 2 3 4 5 7 9 6 8

7 9 6 8quick_sort(                           )  2 4 1 3quick_sort(                            )  
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1 2 3 4 5 7 9 6 8

7 9 6 8quick_sort(                           )  
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1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 9 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 9 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 9 8

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 8 9

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

Call quick sort, and give it the section of the array to the left of 

the pivot, and to the right of the pivot
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1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9

pivoti j
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1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9

7
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1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9

7
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1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9
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1 2 3 4 5 7 9 6 8

6 7 8 9

9



84

1 2 3 4 5 7 9 6 8

6 7 8 9

9
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1 2 3 4 5 7 9 6 8

6 7 8 9
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1 2 3 4 5 6 7 8 9

All done!! 



87

1 2 3 4 5 6 7 8 9

All done!! 

Let’s code this!!!



88

public static int partition(int[] array, int start, int end) {
  int pivot = array[end];
  int i = start - 1;
  for(int j = start; j <= end - 1; j++) {
    if(array[j] < pivot) {
      i++;
      int temp = array[i];
      array[i] = array[j];
      array[j] = temp;
    }
  }
}

public static int[] quick_sort(int[] array, int start, int end) {
   if(end <= start) { //base case: array is size 1 or nothing
      return array;
   }
   int pivot = partition(array, start, end);
   quick_sort(array, start, pivot-1);
   quick_sort(array,pivot + 1, end);
   return array;
}
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public static int partition(int[] array, int start, int end) {
  int pivot = array[end];
  int i = start - 1;
  for(int j = start; j <= end - 1; j++) {
    if(array[j] < pivot) {
      i++;
      int temp = array[i];
      array[i] = array[j];
      array[j] = temp;
    }
  }
}

public static int[] quick_sort(int[] array, int start, int end) {
   if(end <= start) { //base case: array is size 1 or nothing
      return array;
   }
   int pivot = partition(array, start, end);
   quick_sort(array, start, pivot-1);
   quick_sort(array,pivot + 1, end);
   return array;
}

Running time?
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public static int partition(int[] array, int start, int end) {
  int pivot = array[end];
  int i = start - 1;
  for(int j = start; j <= end - 1; j++) {
    if(array[j] < pivot) {
      i++;
      int temp = array[i];
      array[i] = array[j];
      array[j] = temp;
    }
  }
}

public static int[] quick_sort(int[] array, int start, int end) {
   if(end <= start) { //base case: array is size 1 or nothing
      return array;
   }
   int pivot = partition(array, start, end);
   quick_sort(array, start, pivot-1);
   quick_sort(array,pivot + 1, end);
   return array;
}

O(1)

O(1)

O(n)
O(1)

O(1)
O(1)

O(1)

O(1)



91

public static int partition(int[] array, int start, int end) {
  int pivot = array[end];
  int i = start - 1;
  for(int j = start; j <= end - 1; j++) {
    if(array[j] < pivot) {
      i++;
      int temp = array[i];
      array[i] = array[j];
      array[j] = temp;
    }
  }
}

public static int[] quick_sort(int[] array, int start, int end) {
   if(end <= start) { //base case: array is size 1 or nothing
      return array;
   }
   int pivot = partition(array, start, end);
   quick_sort(array, start, pivot-1);
   quick_sort(array,pivot + 1, end);
   return array;
}

O(1)

O(1)

O(n)
O(1)

O(1)
O(1)

O(1)

O(1)

Running time of partition subroutine = O(n) where n= # of elements in array
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public static int partition(int[] array, int start, int end) {
  int pivot = array[end];
  int i = start - 1;
  for(int j = start; j <= end - 1; j++) {
    if(array[j] < pivot) {
      i++;
      int temp = array[i];
      array[i] = array[j];
      array[j] = temp;
    }
  }
}

public static int[] quick_sort(int[] array, int start, int end) {
   if(end <= start) { //base case: array is size 1 or nothing
      return array;
   }
   int pivot = partition(array, start, end);
   quick_sort(array, start, pivot-1);
   quick_sort(array,pivot + 1, end);
   return array;
}

O(1)

O(1)

O(n)
O(1)

O(1)
O(1)

O(1)

O(1)

Running time of partition subroutine = O(n) where n= # of elements in array

O(1)
O(1)

O(n)
O(1)

O(1)

O(1)
Running time of quick sort method = O(n)
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We must now evaluate how often we recursively call the 

method, and the size of the problem we give that method

Reminder: Recursion 

tree for merge sort
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2 4 1 3 5 7 9 6 8

2 4 1 3 7 9 6 8

N / 2 N / 2

Ideally, we want balanced partitions. 

That way we are dividing the problem size by 2 (which gives us log n running time!) 
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2 4 1 3 5 7 9 6 8

2 4 1 3 7 9 6 8

N / 2 N / 2

Because our array is random, we don’t know how balanced our partitions will be
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1 2 4 3 5 7 9 6 8

Because our array is random, we don’t know how balanced our partitions will be

(This is a less ideal case)

4 3 5 7 9 6 81
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This is the ideal situation…

This will give us O(N * log(n)) running time
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This is worst case scenario…

This will give us O(N2) running time
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How balanced our partitions are depends on how we select the pivot
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If we select the median value of the array as the 

pivot, that will always give us the optimal 

recursion tree  and O(n logn) running time
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If we select a random value as the pivot, that will 

actually give us a much better chance of 

O(nlogn) running time



102

Running time of Quick Sort

        O(n2)  worse case scenario

 O(n * log n )  on average 

(n recursive calls, O(n) work at each level)

(logn recursive calls, O(n) work at each level)
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