
CSCI 132:
Basic Data Structures and Algorithms

Sorting (Quick Sort)

Reese Pearsall
Fall 2023
https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

2

Announcements

Program 5 and Lab 12 will be

posted very soon (sorry)

hope you are all doing well

3

Quick Sort is a sorting algorithm that works by partitioning an array around a certain

element in the array, called a pivot. This is a recursive method that then sorts the

sections of the array to the left of the pivot, and to the right of the pivot.

Quick sort is a Divide and Conquer algorithm, which involves dividing the

problem into smaller sub-problems (divide), recursively solving the smaller

problems (conquer), and combining the sub problems to get the final solution

for the original problem

4

Quick sort is rather complex. I don’t expect you to memorize the code, and if

you don’t fully understand the code, that is fine!

You should, however, be able to describe how quick sort works from a

high level, and be able to draw out the steps if given an example array

You should also know the time complexity

of the sorting algorithms that we talk about

5

8 2 4 7 1 3 9 6 5

The first step of Quick Sort is to select a pivot, and to get the pivot sorted

to is correct position

→ This step is known as partitioning

6

8 2 4 7 1 3 9 6 5

The first step of Quick Sort is to select a pivot, and to get the pivot sorted

to is correct position

→ This step is known as partitioning

There are many ways to select a pivot, but to keep things simple,

the last element of the array will be the pivot

pivot

7

8 2 4 7 1 3 9 6 5

pivot

We are going to define two pointers i and j, that will help us get the pivot

sorted correctly

8

8 2 4 7 1 3 9 6 5

pivot

j will be defined to be the starting point of the array (0),

and i will be defined to be (j-1)

i j

9

8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

10

8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

11

8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

12

8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

13

8 2 4 7 1 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

2 is less than 5, so we increase i and then swap!

14

8 2 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

2 is less than 5, so we increase i and then swap!

15

2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

2 is less than 5, so we increase i and then swap!

16

2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

17

2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

4 is less than 5, so we increase i and then swap!

18

2 8 4 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

4 is less than 5, so we increase i and then swap!

19

2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

4 is less than 5, so we increase i and then swap!

20

2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

21

2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

22

2 4 8 7 1 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

23

2 4 1 7 8 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

24

2 4 1 7 8 3 9 6 5

pivot
i j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

25

2 4 1 7 8 3 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

26

2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

27

2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

28

2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

29

2 4 1 3 8 7 9 6 5

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located at index i and j

If not, increase j by 1

30

2 4 1 3 8 7 9 6 5

pivoti j

Once j reaches the pivot, we will increase i by 1, and

then swap the pivot with the element located at index i

31

2 4 1 3 8 7 9 6 5

pivoti j

Once j reaches the pivot, we will increase i by 1, and

then swap the pivot with the element located at index i

32

2 4 1 3 5 7 9 6 8

pivoti j

Once j reaches the pivot, we will increase i by 1, and

then swap the pivot with the element located at index i

33

2 4 1 3 5 7 9 6 8

pivoti j

Once j reaches the pivot, we will increase i by 1, and

then swap the pivot with the element located at index i

???

34

2 4 1 3 5 7 9 6 8

pivoti j

Once j reaches the pivot, we will increase i by 1, and

then swap the pivot with the element located at index i

Our pivot is now in the correct spot!

Everything to the left is less than the pivot,

everything to the right is greater than the pivot

35

2 4 1 3 5 7 9 6 8

This step is known as partitioning

36

2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array

37

2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array

2 4 1 3 7 9 6 8quick_sort() quick_sort()

38

2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array

2 4 1 3 7 9 6 8quick_sort() quick_sort()

Unlike Merge Sort, these are not new arrays, these are just “sections” of the original array

39

2 4 1 3 5 7 9 6 8

Now, we will recursively call quick_sort on the left section of the array, and the right section of the array

2 4 1 3 7 9 6 8quick_sort() quick_sort()

Unlike Merge Sort, these are not new arrays, these are just “sections” of the original array

Due to how we call our recursive methods, we will always prioritize the “left tree” of the array

40

2 4 1 3 5 7 9 6 8

2 4 1 3quick_sort()

Now we partition this section!

41

2 4 1 3 5 7 9 6 8

2 4 1 3quick_sort()

pivoti j

42

2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

43

2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

44

2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

45

2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

46

2 4 1 3 5 7 9 6 8

2 4 1 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

47

2 4 1 3 5 7 9 6 8

2 1 4 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

48

2 4 1 3 5 7 9 6 8

2 1 4 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

49

2 4 1 3 5 7 9 6 8

2 1 4 3

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

50

2 4 1 3 5 7 9 6 8

2 1 3 4

pivoti j

j will now iterate through the array until it reaches the pivot

We will check if index j is less than the pivot

If so, we will increase i by 1, and then swap the elements located

at index i and j

If not, increase j by 1

51

2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4

52

2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4

pivot
i j

53

2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4

pivot
i j

54

2 4 1 3 5 7 9 6 8

2 1 3 4

2 1 4

pivoti j

55

2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

pivoti j

56

2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

57

2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

2

If the size of our “array section” is 1, then it’s already sorted!

58

2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

2

If the size of our “array section” is 1, then it’s already sorted!

59

2 4 1 3 5 7 9 6 8

2 1 3 4

1 2 4

If the size of our “array section” is 1, then it’s already sorted!

60

2 4 1 3 5 7 9 6 8

1 2 3 4

4

If the size of our “array section” is 1, then it’s already sorted!

61

2 4 1 3 5 7 9 6 8

1 2 3 4

4

If the size of our “array section” is 1, then it’s already sorted!

62

2 4 1 3 5 7 9 6 8

1 2 3 4

If the size of our “array section” is 1, then it’s already sorted!

63

1 2 3 4 5 7 9 6 8

7 9 6 8quick_sort() 2 4 1 3quick_sort()

64

1 2 3 4 5 7 9 6 8

7 9 6 8quick_sort()

65

1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j

66

1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j

67

1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j

68

1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j

69

1 2 3 4 5 7 9 6 8

7 9 6 8

pivoti j

70

1 2 3 4 5 7 9 6 8

7 6 9 8

pivoti j

71

1 2 3 4 5 7 9 6 8

7 6 9 8

pivoti j

72

1 2 3 4 5 7 9 6 8

7 6 9 8

pivoti j

73

1 2 3 4 5 7 9 6 8

7 6 8 9

pivoti j

74

1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

Call quick sort, and give it the section of the array to the left of

the pivot, and to the right of the pivot

75

1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j

76

1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j

77

1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j

78

1 2 3 4 5 7 9 6 8

7 6 8 9

7 6 9

pivoti j

79

1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9

pivoti j

80

1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9

7

81

1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9

7

82

1 2 3 4 5 7 9 6 8

7 6 8 9

6 7 9

83

1 2 3 4 5 7 9 6 8

6 7 8 9

9

84

1 2 3 4 5 7 9 6 8

6 7 8 9

9

85

1 2 3 4 5 7 9 6 8

6 7 8 9

86

1 2 3 4 5 6 7 8 9

All done!!

87

1 2 3 4 5 6 7 8 9

All done!!

Let’s code this!!!

88

public static int partition(int[] array, int start, int end) {
 int pivot = array[end];
 int i = start - 1;
 for(int j = start; j <= end - 1; j++) {
 if(array[j] < pivot) {
 i++;
 int temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }
}

public static int[] quick_sort(int[] array, int start, int end) {
 if(end <= start) { //base case: array is size 1 or nothing
 return array;
 }
 int pivot = partition(array, start, end);
 quick_sort(array, start, pivot-1);
 quick_sort(array,pivot + 1, end);
 return array;
}

89

public static int partition(int[] array, int start, int end) {
 int pivot = array[end];
 int i = start - 1;
 for(int j = start; j <= end - 1; j++) {
 if(array[j] < pivot) {
 i++;
 int temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }
}

public static int[] quick_sort(int[] array, int start, int end) {
 if(end <= start) { //base case: array is size 1 or nothing
 return array;
 }
 int pivot = partition(array, start, end);
 quick_sort(array, start, pivot-1);
 quick_sort(array,pivot + 1, end);
 return array;
}

Running time?

90

public static int partition(int[] array, int start, int end) {
 int pivot = array[end];
 int i = start - 1;
 for(int j = start; j <= end - 1; j++) {
 if(array[j] < pivot) {
 i++;
 int temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }
}

public static int[] quick_sort(int[] array, int start, int end) {
 if(end <= start) { //base case: array is size 1 or nothing
 return array;
 }
 int pivot = partition(array, start, end);
 quick_sort(array, start, pivot-1);
 quick_sort(array,pivot + 1, end);
 return array;
}

O(1)

O(1)

O(n)
O(1)

O(1)
O(1)

O(1)

O(1)

91

public static int partition(int[] array, int start, int end) {
 int pivot = array[end];
 int i = start - 1;
 for(int j = start; j <= end - 1; j++) {
 if(array[j] < pivot) {
 i++;
 int temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }
}

public static int[] quick_sort(int[] array, int start, int end) {
 if(end <= start) { //base case: array is size 1 or nothing
 return array;
 }
 int pivot = partition(array, start, end);
 quick_sort(array, start, pivot-1);
 quick_sort(array,pivot + 1, end);
 return array;
}

O(1)

O(1)

O(n)
O(1)

O(1)
O(1)

O(1)

O(1)

Running time of partition subroutine = O(n) where n= # of elements in array

92

public static int partition(int[] array, int start, int end) {
 int pivot = array[end];
 int i = start - 1;
 for(int j = start; j <= end - 1; j++) {
 if(array[j] < pivot) {
 i++;
 int temp = array[i];
 array[i] = array[j];
 array[j] = temp;
 }
 }
}

public static int[] quick_sort(int[] array, int start, int end) {
 if(end <= start) { //base case: array is size 1 or nothing
 return array;
 }
 int pivot = partition(array, start, end);
 quick_sort(array, start, pivot-1);
 quick_sort(array,pivot + 1, end);
 return array;
}

O(1)

O(1)

O(n)
O(1)

O(1)
O(1)

O(1)

O(1)

Running time of partition subroutine = O(n) where n= # of elements in array

O(1)
O(1)

O(n)
O(1)

O(1)

O(1)
Running time of quick sort method = O(n)

93

We must now evaluate how often we recursively call the

method, and the size of the problem we give that method

Reminder: Recursion

tree for merge sort

94

2 4 1 3 5 7 9 6 8

2 4 1 3 7 9 6 8

N / 2 N / 2

Ideally, we want balanced partitions.

That way we are dividing the problem size by 2 (which gives us log n running time!)

95

2 4 1 3 5 7 9 6 8

2 4 1 3 7 9 6 8

N / 2 N / 2

Because our array is random, we don’t know how balanced our partitions will be

96

1 2 4 3 5 7 9 6 8

Because our array is random, we don’t know how balanced our partitions will be

(This is a less ideal case)

4 3 5 7 9 6 81

97

This is the ideal situation…

This will give us O(N * log(n)) running time

98

This is worst case scenario…

This will give us O(N2) running time

99

How balanced our partitions are depends on how we select the pivot

100

If we select the median value of the array as the

pivot, that will always give us the optimal

recursion tree and O(n logn) running time

101

If we select a random value as the pivot, that will

actually give us a much better chance of

O(nlogn) running time

102

Running time of Quick Sort

 O(n2) worse case scenario

 O(n * log n) on average

(n recursive calls, O(n) work at each level)

(logn recursive calls, O(n) work at each level)

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102

