y
CSCI 132:

Basic Data Structures and Algorithms

Searching (Binary Search)

Reese Pearsall
Fall 2023

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html *All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

RANDOM PIVOT QUICKSORT,
TIMSORT MERGESORT "=

Announcements

Lab 12 due tomorrow @11:59 PM

* being called smart because you
B can recite the complexities of
sorting algorithms (.t in reality

Program 5 due Sunday December 10t

Gradebook

=, it's all surface level intelligence
' and you don't feel like you're really
good at anything

char[][] maze

[[#, #, #, # #],

char[] [] maze
[[# #, #, # #],
[# .00 #],

maze [0]

char[][] maze

[[#, #, #, # #],

maze|[1]

char[][] maze

[[#, #, #, # #],

maze[1][0]

char[][] maze

[[#, #, #, # #],

maze[l] [2]

char[][] maze

[[#, #, #, # #],

maze y] [x]

L A |
(#, #,
[, H] ‘
4 # . H y
m 1 T

]

Goal: Move forward one spot

We need to know which direction we are facing first!

mazely] [x]

How do we know direction we are facing®

[T, 4 #, 0] |
[#,.,.,., #],
[.,. #,.,#],

[#, # #, . #]
[# ., ., +Y

]

Goal: Move forward one spot

We need to know which direction we are facing first! maze[y] [x]

Our character Y value and our hand’s Y value is the same,
And our character’s X value is less than our hands’ X value

10

char[][] maze

[[#, #, #, # #],

if(y == hand y && hand x > x)
direction = "North";

¥

maze ly] [x]

11

char[]][] maze

[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4], /
[#, #, #, ., #],
[# .,.,.,.],

if(y == hand_y && hand x > x)
direction = "North";

! +Y

How do we detect if we can move forward?

maze ly] [x]

12

North

char[]][] maze

[[# #, #, # #],

[#,.,.,.,#],
[.,..#, ., #], /

[#, #, #, ., #],

][#,.,.,.,.],

if(y == hand_y && hand x > x)
direction = "North";

! +Y

if(maze[hand_y][hand x] == '#' 8& maze[y-1][x] == *.”){

maze ly] [x]

13

char[]][] maze

[[# #, #, # #],
[#,.,.,.,#],
[.,..#, ., #], /
[#, #, #, ., #],

[# . ., ..],
]

if(y == hand_y && hand x > x)
direction = "North";

) +Y
if(maze[hand_y][hand x] == '#' && maze[y-1][x] == *.”){

Make one move by recursively calling
the method with the new values

maze ly] [x]

makeMove (x, y, hand x, hand y)

14

char[]][] maze

[[# #, #, # #],
[#,.,.,.,#],
[.,..#, ., #], /
[#, #, #, ., #],

[# . ., ..],
]

if(y == hand_y && hand x > x)
direction = "North";

) +Y
if(maze[hand_y][hand x] == '#' && maze[y-1][x] == *.”){

Make one move by recursively calling
the method with the new values

maze ly] [x]

makeMove (x, y, hand x, hand y)

15

char[]][] maze
[[#, # #, # #],
[#1'1'1'1#]1
['1'1#1'1#]1
[#, #, #, ., #],
[#1'1) 1']1
]
if(y == hand_y && hand x > x)
direction = "North";
}
if(maze[hand_y][hand x] == '#' && maze[y-1][x] == “.”°){
makeMove (x, y-1, hand x, hand y-1);
}

makeMove (x, y, hand x, hand y)

+Y

v

West

mazely] [x]

North

South

East

16

char[] []
[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],
[# .,.,.,.],

if(y == hand_y && hand x > x)

maze

direction = "North";

}

if(direction.equals("North")) {
if(maze[hand_y][hand_x]

makeMove (x, y-1, HanGI/NAERANGST) ;

makeMove (x, y, hand x, hand y)

+Y

"#' && maze[y-1][x] == “.°){

v

West

maze ly] [x]

North

South

East

17

char[]][] maze

[[#, #, #, # #],

[#, .,.,., %]

[.,..#,., 4], /
[#, #, #, ., #],

][#,., R

if(y == hand_y && hand x > x)
direction = "North";

) +Y

if(direction.equals("North")) {
if(maze[hand_y][hand_x] == "#' && maze[y-1][x] == “.”°){

makeMove (x, y-1, hand x, hand y-1);

Turn right and move forward one spot? mazely] [x]

makeMove (x, y, hand x, hand y)

18

char[]][] maze

[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],

][#,., R

if(y == hand_y && hand x > x)
direction = "North";

) +Y

if(direction.equals("North")) {
if(maze[hand_y][hand_x] == "#' && maze[y-1][x] == “.”°){

makeMove (x, y-1, hand x, hand y-1);

}
if(maze[hand_y][hand x] == .’ && maze[y-1][x]=="#"){

maze ly] [x]

}

makeMove (x, y, hand x, hand y)

19

char[] []
[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],
][#,., R

if(y == hand_y && hand x > x)

maze

direction = "North";

}

if(direction.equals("North")) {
if(maze[hand_y][hand_x]

makeMove (x, y-1, hand x, hand y-1);

+Y

"#' && maze[y-1][x] == “.°){

}
if(maze[hand_y][hand x] == .’ && maze[y-1][x]=="#"){

makeMove (?27?, 2%

}

makeMove (x, y, hand x, hand y)

22, 27);

4

v

West

maze ly] [x]

North

South

East

20

char[] []
[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],
][#,., R

if(y == hand_y && hand x > x)

maze

direction = "North";

}

if(direction.equals("North")) {
if(maze[hand_y][hand_x]

makeMove (x, y-1, hand x, hand y-1);

}

+Y

"#' && maze[y-1][x] == “.°){

if(maze[hand _y][hand x] == €.’ && maze[y-1][x]=="#"){

makeMove (x+1, y, hand x, hand y+1);

}

makeMove (x, y, hand x, hand y)

v

West

maze ly] [x]

North

South

East

21

char[] []
[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],
][#,., R

if(y == hand_y && hand x > x)

maze

direction = "North";

}

if(direction.equals("North")) {
if(maze[hand_y][hand_x]

makeMove (x, y-1, hand x, hand y-1);

}

+Y

"#' && maze[y-1][x] == “.°){

if(maze[hand _y][hand x] == €.’ && maze[y-1][x]=="#"){

makeMove (x+1, y, hand x, hand y#l);

}

makeMove (x, y, hand x, hand y)

v

West

maze ly] [x]

North

South

East

22

char[] []
[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],
][#,., R

if(y == hand_y && hand x > x)

maze

direction = "North";

}

if(direction.equals("North")) {
if(maze[hand_y][hand_x]

makeMove (x, y-1, hand x, hand y-1);

}

+Y

"#' && maze[y-1][x] == “.°){

if(maze[hand _y][hand x] == €.’ && maze[y-1][x]=="#"){

makeMove (x+1, y, hand x, hand y+1);

}

makeMove (x, y, hand x, hand y)

v

West

maze ly] [x]

North

South

East

23

char[] []
[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],
][#,., R

if(y == hand_y && hand x > x)

maze

direction = "North";

}

if(direction.equals("North")) {
if(maze[hand_y][hand_x]

makeMove (x, y-1, hand x, hand y-1);

}

if(maze[hand _y][hand x] == €.’ && maze[y-1][x]=="#"){

makeMove (x+1, y, hand x, hand y+1);

}

makeMove (x, y, hand x, hand y)

"#' && maze[y-1][x] == “.°){

v

+Y

West

1. Turn right
2. Go forward
3. Turn left

North

South

East

24

char[][] maze maze|[y] [X]

[[#, #, #, # #],
[#, .,.,., %]
[.,..#,., 4],
[#, #, #, ., #],

][#,., R

if(y == hand_y && hand x > x)
direction = "North";

} +Y

if(direction.equals("North")) {
if(maze[hand_y][hand x] == €.’ && maze[y-1][x]=="#"){
makeMove (x+1, y, hand x, hand y+1);

}

mif(maze[hand_y][hand_x] == '"#' && maze[y-1][x] == “.”){ -
makeMove (x, y-1, hand x, hand y-1); 1. Turn I’Ight

2. Go forward

} 3. Turn left
Im left
/' Turn le j .

v

char[][] maze mazel|y] [x])rx
[[#’ #1 #, # ;#]; — West 4l7EaSt

[# ..., 4.
[, #,., #
[#, #, #, ., #],
][#,., .

if(y == hand_y && hand x > x)
direction = "North";

) +Y

if(direction.equals("North")) {
if(maze[hand_y][hand x] == €.’ && maze[y-1][x]=="#"){
makeMove (x+1, y, hand x, hand y+1);

}

mif(maze[hand_y][hand_x] == "#' && maze[y-1][x] == €.’){
makeMove (x, y-1, hand x, hand y-1); You will have need if statements for North, East, South, and West

}

Lots of if statements ©

v

[[#, #, #, # #], —

char[][] maze maze|[y] [X])rx

[# ..., 4.
[, #,., #
[#, #, #, ., #],
[# ..., 1,

if(y == hand_y && hand x > x)
direction = "North";

) +Y

if(direction.equals("North")) {

if(maze[hand

e[y-1][x]=="#"){

This code is technically

not complete, you will

need to ass some more
code here (backtracking) == A
1); You will have need if statements for North, East, South, and West

Lots of if statements ©

Backtracking path

8_A_A

HHHEHHHTHRH
HHEHHEHHEREHHEH

#H HHEHESH

#
#

28

29

Searching

We store values in data structures, but we also need to retrieve/search for values!

Today, we will discuss techniques for how to search for a value in a data structure

(We will be using arrays, but these techniques could also be
used on Linked Lists, queues, stacks, etc)

30

Searching

Option 1: Linear Search

Check every spot until one by one until we find what we are looking for

public int linear_search(int[] array, int s) {
for(int i = 9; 1 < array.length; i++) {
if(array[i] == s) {
return i;

¥

return -1;

31

Searching

Option 1: Linear Search

Check every spot until one by one until we find what we are looking for

Not efficient for large data structures. O(n) running time

public int linear_search(int[] array, int s) {
for(int i = 9; 1 < array.length; i++) {
if(array[i] == s) {
return i;

¥

return -1;

32

Searching

Option 1: Linear Seaf&s

Check every spot until

Not efficient for l[arge d!

public
for (i
}

}

til we fi

Can we do better?

33

12

10

11

15

18

21

27

31

41

43

50

M

MONTANA

STATE UNIVERSITY

Target Value:

0

2°1

12

10

11

15

18

21

27

31

41

43

50

We can leverage the fact that this array is sorted to make
searching more efficient

Target Value:

0

2°1

12

10

11

15

18

21

27

31

41

43

50

1. Start at the middle of the array

36

Target Value:

0

2°1

12

10

11

15

18

21

27

31

41

43

50

1. Start at the middle of the array

2. Compare to target value:

—> If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array

- If the target value is less than the middle, discard the “right
section” of the array

37

Target Value: 27
0 12
1 10 11 15 18 21 27 31 41 43 50
low high

1. Start at the middle of the array

2. Compare to target value:

—> If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array

- If the target value is less than the middle, discard the “right
section” of the array

We will define two pointers, 1ow and high that point to the possible bounds of the target value

38

Target Value: 27
0 12
1 10 11 15 18 21 27 31 41 43 50
low high

1. Start at the middle of the array

2. Compare to target value:

—> If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array

- If the target value is less than the middle, discard the “right
section” of the array

We will define two pointers, 1ow and high that point to the possible bounds of the target value

39

Target Value: 27

12

43 50
 § L)
low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

Because we know the array is sorted, and the target value is greater than our mid point, then we
know the target value must be located somewhere to the right.

We can eliminate half of the array!!!

40

Target Value: 27

12

41

43

50

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

high

41

Target Value: 27

12

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

43

50

high

42

Target Value: 27

12

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

43

50

high

43

Target Value: 27

0 7 8

12

Tt 1
low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

44

Target Value: 27

0 7 8

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

12

45

Target Value: 27

0 7 8

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

12

46

Target Value: 27

0 7 8 12

low high
1. Start at the middle of the array
2. Compare to target value:
- If the value is the target value, return
- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)
- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

47

Target Value: 27

0 7 8 12

low high
1. Start at the middle of the array
2. Compare to target value:
- If the value is the target value, return
- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)
- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

48

Target Value: 27

0 7 8 12

1z [9w [uls|w[a[z]an]al]as]so]
Tt

low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

49

Target Value: 27

0 7 8 12

1z [9w [uls|w[a[z]an]al]as]so]
Tt

low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

50

Target Value: 27

0 7 8 12

1z [9w [uls|w[a[z]an]al]as]so]
Tt

low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

This algorithm is known as Binary Search

51

Target Value: 27 /

0 7 8 12

1z [9w [uls|w[a[z]an]al]as]so]
Tt

low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

How to calculate the mid point?

52

Target Value: 27 /

0 7 8

Tt

low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

How to calculate the mid point? (low + high) /

2

53

Target Value: 27 /

0 7 8 12

1z [9w [uls|w[a[z]an]al]as]so]
Tt

low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

How do we know when to stop looping?

54

Target Value: 27 /

0 7 8 12

1z [9w [uls|w[a[z]an]al]as]so]
Tt

low high

1. Start at the middle of the array

2. Compare to target value:

- If the value is the target value, return

- If the target value is greater than the middle, discard the “left
section” of the array (move the low pointer)

- If the target value is less than the middle, discard the “right
section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until
target value is found

If we find the target value, or if 1ow and

How do we know when to stop looping? high cross each other (low > high)

55

Target Value: 27 /

12
50

LET’S CODE THIS

N =
SN

2> |If
2> If
sectio
- If
sectio
3. Re(
target value is found

k h 00DING? If we find the target value, or if Low and
How do we know when to stop looping” high cross each other (low > high)

T Movovmna

private static int binary search(int[] array, int n) {
int low = 9;
int high = array.length - 1;
while(low <= high) {
int mid = (low + high) / 2;
if(n == array[mid]) {
return mid;

}

else if(n > array[mid]) {
low = mid + 1;

}
else {
high = mid - 1;
}
}
return -1;

57

private static int binary search(int[] array, int n) {
int low = 0;
int high = array.length - 1;
while(low <= high) {
int mid = (low + high) / 2;
if(n == array[mid]) {
return mid;

}

else if(n > array[mid]) {
low = mid + 1;

}
else {
high = mid - 1;
}
}
return -1;

¥

Running time?

58

private static int binary search(int[] array, int n) {
int low = 0;
int high = array.length - 1;
while(low <= high) {
int mid = (low + high) / 2;
if(n == array[mid]) {
return mid;

}

else if(n > array[mid]) {
low = mid + 1;

}
else {
high = mid - 1;
}
}
return -1;

¥

Runni Nng time? Each time we loop, we eliminate half the array

59

Running time”?

Initial length of array = n

lteration 1 - Length of array = n/2

MONTANA
STATE UNIVERSITY

Running time”?

Initial length of array = n

lteration 1 - Length of array = n/2

lteration 2 - Length of array = (n/2) /2 = 'n,/22

MONTANA
STATE UNIVERSITY

Running time”?

Initial length of array = n

lteration 1 - Length of array = n/2
lteration 2 - Length of array = (n/2) /2 = 'n,/22

Iteration k - Length of array = n/2k

MONTANA
STATE UNIVERSITY

Running time”?

Initial length of array = n

lteration 1 - Length of array = n/2
lteration 2 - Length of array = (n/2) /2 = n/2?

Iteration k - Length of array = n/2k

After Kk iterations, eventually our array has been reduced to one element

Length of array = n/2% = 1

n = 2Fk

“Two to what power makes n??”

MONTANA

STATE UNIVERSITY

M

Running time”?

After Kk iterations, eventually our array has been reduced to one element

Length of array = n /2% = 1

n = 2k

“Two to what power makes n??”

logs(n) = logs(2")

MONTANA

STATE UNIVERSITY

M

Running time”?

After Kk iterations, eventually our array has been reduced to one element

Length of array = n/2F =1

n = 2k

“Two to what power makes n??”

logs(n) = logs(2")

logs(n) = k * logs2 -

MONTANA

STATE UNIVERSITY

M

Running time?

After k iterations, eventually our array has been reduced to one element

Length of array = n/2% = 1

n = 2k
“Two to what power makes n??”
loga(n) = loga(2*)

loga(n) = k x [0

ZOQ?(H) =k After K iterations, we will have done log(n) divisions

66

¥

private static int binary search(int[] array, int n) {

int low = ©;
int high = array.length - 1;
while(low <= high) {
int mid = (low + high) / 2;
if(n == array[mid]) {
return mid;

}

else if(n > array[mid]) {
low = mid + 1;

}
else {
high = mid - 1;
}
}
return -1;

Generally speaking, whenever we eliminate half of the problem

RU nnin g tim 6? each iteration, that will give us O(logn) running time

67

private static int binary search(int[] array, int n) {
int low = @;0(1)
int high = array.length - 1; ()
while(low <= high) { O(log n)
int mid = (low + high) / 2; o)
if(n == array[mid]) { O(1)
return mid; O(1)
}
else if(n > array[mid]) { O(1)
low = mid + 1; O(1)
}
else {
high = mid - 1; O(1)
}

}
return -1; 0O(1)

¥

Generally speaking, whenever we eliminate half of the problem

RU nnin g tim 6? each iteration, that will give us O(logn) running time

¥

private static int binary search(int[] array, int n) {

int low = @;0(1)
int high = array.length - 1; ()
while(low <= high) { O(log n)
int mid = (low + high) / 2; o)
if(n == array[mid]) { O(1)
return mid; O(1)
}
else if(n > array[mid]) { O(1)
low = mid + 1; O(1)
}
else {
high = mid - 1; O(1)
}

}
return -1; 0O(1)

Running time? O(log n)

69

private static int binary search(int[] array, int n) {
int low = 0;
int high = array.length - 1;
while(low <= high) {
int mid = (low + high) / 2;

int result = x.compareTo(array[mid])

if(result = 9) {
return mid;

} We can do binary search
else if(result > 0){ :

Tow = mid + 1: on an array of Strings
} using the compareTo ()
else {

high = mid - 1; methOd

}
}

return -1;

70

if(low <= high) {
int mid = (low + high) / 2;
if(n == array[mid]) {
return mid;

}

else if(n > array[mid]) {

}
else {
return binary search(?????????);
}
}
else {
return -1;
}

¥

Binary Search can also be implemented using recursion

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71

