
CSCI 132:
Basic Data Structures and Algorithms

References, Debugging, Program 1

Reese Pearsall & Iliana Castillon
Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

2

Announcements

• Program 1 posted, due Friday

9/20 @ 11:59 PM

• Lab 3 will be posted shortly

after class today

3

Program 1

4

When comparing two objects, the ==

operator will check if the two reference

values are pointing to the same object

When using string literals,

Java won’t create two separate

objects for each string, so

sometimes == will work

String Literals

String Objects

If we make them String objects, now

== will not work because these are

two different String objects

When comparing Strings, you should still always use .equals()

5

public class ReferencesDemo {
public static void main(String[] args) {

Person person1 = new Person("Jim Bob", 44);
Person person2 = new Person("Sally", 28);

}
}

person1 and person2 are references to a Person object

name: “Jim Bob”

age: 44

name: “Sally”

age: 28

person1

person2

6

public class ReferencesDemo {
public static void main(String[] args) {

Person person1 = new Person("Jim Bob", 44);
Person person2 = new Person("Sally", 28);
person1.changeName("Jack");

}
}

person1 and person2 are references to a Person object

name: “Jim Bob”

age: 44

name: “Sally”

age: 28

person1

person2

7

public class ReferencesDemo {
public static void main(String[] args) {

Person person1 = new Person("Jim Bob", 44);
Person person2 = new Person("Sally", 28);
person1.changeName("Jack");

}
}

person1 and person2 are references to a Person object

name: “Jack”

age: 44

name: “Sally”

age: 28

person1

person2

In this method call, this is referencing the person1 object

8

public class ReferencesDemo {
public static void main(String[] args) {

Person person1 = new Person("Jim Bob", 44);
Person person2 = new Person("Sally", 28);

Person person3 = person1;
}

}

Suppose we create a new reference

variable and link it to an existing object

name: “Jack”

age: 44

name: “Sally”

age: 28

person1

person2

In this method call, this is referencing the person1 object

9

public class ReferencesDemo {
public static void main(String[] args) {

Person person1 = new Person("Jim Bob", 44);
Person person2 = new Person("Sally", 28);

Person person3 = person1;
}

}

Suppose we create a new reference

variable and link it to an existing object

person3 is now pointing to same object

and person1
name: “Jack”

age: 44

name: “Sally”

age: 28

person1

person2

In this method call, this is referencing the person1 object

person3

10

public class ReferencesDemo {
public static void main(String[] args) {

Person person1 = new Person("Jim Bob", 44);
Person person2 = new Person("Sally", 28);

Person person3 = person1;
person1.changeName("test");

}
}

Suppose we create a new reference

variable and link it to an existing object

person3 is now pointing to same object

and person1

name: “test”

age: 44

person1

Any changes to person1 will also update person3 (and vice versa)

person3

System.out.println(person1.getName()) → “test”

System.out.println(person3.getName()) → “test”

11

Debugging Code
Our IDE has a super nifty debugger,

which allows us to pause our code,

and then step through each line in the

control flow.

The first thing to do is to place a breakpoint,

which is where execution will pause at, and

debugging will begin

• Usually you try to place the breakpoint

where you think things are going wrong

Then, press the little green bug icon next to the

play button, which will run the debugger and stop

at your breakpoint

Use the “step into” and “step over” buttons to start walking through your code

12

Debugging Code

Our IDE has a super slick debugger built in to it. I highly

recommend learning how to use the debugger tool (see lecture)

Rubber Duck Debugging

Many programmers have had the experience of explaining a problem to someone else,

possibly even to someone who knows nothing about programming, and then hitting upon

the solution in the process of explaining the problem. In describing what the code is

supposed to do and observing what it actually does, any incongruity between these two

becomes apparent.[2] More generally, teaching a subject forces its evaluation from different

perspectives and can provide a deeper understanding.[3] By using an inanimate object, the

programmer can try to accomplish this without having to interrupt anyone else, and with

better results than have been observed from merely thinking aloud without an audience.

(From Wikipedia)

https://en.wikipedia.org/wiki/Rubber_duck_debugging#cite_note-cardboarddog-2
https://en.wikipedia.org/wiki/Learning_by_teaching
https://en.wikipedia.org/wiki/Rubber_duck_debugging#cite_note-3

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

