
CSCI 132:
Basic Data Structures & Algorithms

Abstract, Static, & OOP conclusion

Reese Pearsall & Iliana Castillon
Fall 24

Announcements

• Don’t have to download all the .java files from the website
• Can open a java project by downloading .zip

• “workspace” from the website

Abstract classes are restricted classes that cannot be used to
create objects (to access it, it must be inherited from another
class)
public abstract class Food {

protected String name;
protected int calories;
protected double price;

public Food(String name, int calories, double price) {

this.name = name;
this.calories = calories;
this.price = price;

 }

public class FoodDemo {

public static void main(String[] args) {
 Food cheetos = new Food("Cheetos", 100, 5.99);

Cannot instantiate the type Food

Error:

Abstract classes cannot be used
to create objects

Must be inherited by another
class if you want to access

Abstract methods are defined but don’t provide
implementation (can only be implemented using subclasses)

public abstract class Animal {
 public abstract void makeSound();
}

public class Bird extends Animal {
 public void makeSound() {
 System.out.println("The " + species + " goes chirp chirp chirp!");
}

Very similar to interfaces

abstract methods can only be used in abstract classes

Static methods are methods in Java that can be called without
creating an object (instance) of a class

We do not need to create a StaticDemo object to call the fun1() method

Static methods are methods in Java that can be called without
creating an object (instance) of a class

If the static method is in another class, we can access it by giving the class name (AnotherClass)

Once again, I do not need to create an AnotherClass object to call this static method

However, now objects are no longer an implicit argument to this method (cant use this anymore)

Static methods are methods in Java that can be called without
creating an object (instance) of a class

This is a very common error/warning to see in Java.
• You can turn the method static by adding the static keyword in the method

definition
• Or you use OOP and call the method on an instance of the class

•

(Easy & quick fix)

AnotherClass obj = new AnotherClass();

Obj.funMethod(“Hello”);
(Usually this is the better solution most of the time)

Cannot make a static reference to the non-static method funMethod() from the type AnotherClass

Static variables are shared by all instances of a class. This
means that if one instance modifies the variable, the change is
visible to all other instances.

public class Example {
 public static int count = 0; // Static var

 public Example() {
 count++;
 }

 public static void printCount() {
System.out.println("Count: " + ExampleDemo.count);

 }

public class ExampleDemo {

 public static void main(String[] args) {
Example e1 = new Example();
Example e2 = new Example();
Example.printCount(); // Prints "Count: 2"

 }

Access static vars by calling
class name:

ExampleDemo.count

4 pillars of Object Oriented
Programming (OOP)

Polymorphism, Abstraction, Encapsulation, Inheritance

Polymorphism is the ability of a class to provide different
implementations of a method, depending on the type of object.

Lion simba = new Lion(”African Lion", 400.0, "Africa", 25000, 25);
Bird private = new Bird(”Adelie penguin", 10, "Antarctica", 10000000, 15);

simba.makeSound();
private.makeSound();

The makeSound()method does something different for each object

Polymorphism is the ability of a class to provide different
implementations of a method, depending on the type of object

Lion simba = new Lion(”African Lion", 400.0, "Africa", 25000, 25);

Animal simba = new Lion(”African Lion", 400.0, "Africa", 25000, 25);

We can also treat the simba reference variable as an Animal, since Lion inherits from Animal

Polymorphism also refers to the ability for an object to take many forms

Animal simba = new Lion();
Animal meatball = new Cat();

Animal[] myAnimalArray = {simba, meatball};

Animal

Cat Lion

Abstraction is the process of hiding certain details and showing only
essential information to the user.

Abstraction can be achieved with either abstract classes or interfaces

Food

Fruit Vegetable Beverage

simplifying complex systems by
breaking them into more
manageable parts.

Food.java:
Took on name, calories, and price
so we didn’t have to worry about
them in subclasses

Encapsulation is the process of wrapping code and data together into a
single unit.

Bundling of data and methods that operate on that data within a single unit, which is
called a class (ie getters and setters)

Helpful for code organization:
 Where does it make sense to keep things together, and where are
 responsibilities separate?

Inheritance is the process of one class inheriting properties and methods
from another class

Inheritance can be achieved with the extends keyword

Animal

Amphibian Lion Bird

Useful for code reusability:

 reuse attributes and methods of an existing class when you create a new class

final keyword:
Creates a class that can not
be extended

final class className{
}

	Slide 1: CSCI 132: Basic Data Structures & Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: 4 pillars of Object Oriented Programming (OOP)
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

