CSCI 132:
Basic Data Structures and Algorithms

Linked Lists

Reese Pearsall & lliana Castillon
Fall 2024

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html *All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

Announcements

Program 1 is due
Sunday at 11:59 PM

The List ADT

A List is a linear, ordered collection of elements
« Can dynamically grow and shrink in size

MONTANA

STATE UNIVERSITY

M

The List ADT

Very vague description. We can achieve
this functionality in several different ways
in java

A List is a linear, ordered collection of elements
« Can dynamically grow and shrink in size

The List ADT

Very vague description. We can achieve
this functionality in several different ways
in java

A List is a linear, ordered collection of elements
« Can dynamically grow and shrink in size

Any list should be able to:
« Get(index)

« Add(Element)

* Add(Element, index)
 Remove(Element)
 Remove(Index)

e Size()

* ISEmpty()

S MWMoNmans

The List ADT

Very vague description. We can achieve

A List Is a linear, ordered collection of elements .) T .
this functionality in several different ways

« Can dynamically grow and shrink in size

in java
Any list should be able to: —
« Get(index)
« Add(Element)
« Add(Element, index) A List Abstract Data Type (ADT)
« Remove(Element) ——— describes what a list needs to do,
. Remove(lndex) rather than how to implement it
e Size()
* ISEmpty()

T Moo

The Pizza ADT

a dish of Italian origin consisting of a flat, round base of dough baked with
a topping of tomato sauce and cheese, typically with added meat or vegetables.

The List ADT

Very vague description. We can achieve

A List Is a linear, ordered collection of elements .) T .
this functionality in several different ways

« Can dynamically grow and shrink in size

in java
Any list should be able to: —
« Get(index)
« Add(Element)
« Add(Element, index) A List Abstract Data Type (ADT)
« Remove(Element) ———— describes what a list needs to do,
. Remove(lndex) rather than how to implement it
* Size() Implementations of a List:
. isEmpty() « ArrayLists

_/ Linked Lists

T Moo

Linked Lists

A Linked List Is a data structure that consists of a collection of
connected nodes

Susan

Reese Cosmo

Nodes consists of data (String, int, array, etc) and a pointer to the next node

Linked Lists

A Linked List Is a data structure that consists of a collection of
connected nodes

head

\l/ Susan

Reese Cosmo

Nodes consists of data (String, int, array, etc) and a pointer to the next node
A Linked List also has a pointer to the start of the Linked List (head)

Node. java LinkedList.java LinkedListDemo. java

head public static void main(String[] args) {
Susan N Node nl1 = new Node("Reese");
//;a \\fﬁd Node n2 = new Node("Susan");
Reese | /] cosmo Node n3 = new Node("Cosmo");
SinglylLinkedList 11 = new SinglylLinkedList();
Reese |——
11.addToFront(nil);
11.addToFront(n2);
11.addToFront(n3);
Collection of nodes
' ' connected by pointers. : :
Blueprlnt for a single node yp Creates the LinkedList
In our data structure.
head pointer
Nodes have data, and a : pf e s Calls methods to
pointer to the next node Size of linkead lis

manipulate Linked List

Methods for adding,
removing, searching for
nodes

11

A Linked List will hold Node objects

Reese
public class Node {

private int age,;
private String name; } Data
Pointer to Susan

next Node
public Node(int a, String n) {
this.age = a;
this.name = n;
this.next = null; Cosmo

private Node next; }

12

A Linked List will hold Node objects

public void setNext(Node n) {

this.next = n; System.out.println (reese.getNext () .getData())

}

public Node getNext() {
return this.next;

277

}

public String getData() {
return this.name + ", Age:

+ this.age;

}

Reese ____________€;> Cosmo
13

A Linked List will hold Node objects

public void setNext(Node n) {

this.next = n; System.out.println (reese.getNext () .getData())

}

public Node getNext() {
return this.next;

This would print out the Cosmo node’s data

}

public String getData() {
return this.name + ", Age:

+ this.age;

}

next

Reese ____________€;> Cosmo
S MUMowmna

A Linked List will hold Node objects

public void setNext(Node n) {

this.next = n;
’ reese.setNext (susan)

?7?77?

}

public Node getNext() {
return this.next;

}

public String getData() {
return this.name + ", Age:

Susan

+ this.age;

}

next

Reese ____________€;> Cosmo
15

A Linked List will hold Node objects

public void setNext(Node n) {

this.next = n;
’ reese.setNext (susan)

}

public Node getNext() {
return this.next;

Set’s the Reese’s node next value to point to Susan

}

public String getData() {
return this.name + ", Age:

Susan

+ this.age;

}

next

The Cosmo node also got
removed from the linked list

(1)

16

Reese

Linked List Creation

public class SinglylinkedList {

private Node head;
private int size;

public SinglylLinkedList() {

head = null;
size = 0O;
}
head
Susan
R
eese Cosmo ~t>null

17

Linked List Methods

 addToFront () -adds new node to beginning of LL
* addToBack () —adds new node to end of LL

e removeFirst () —removes first node of LL

* removelast () —removes last node of LL

* printLinkedList () — prints nodes and their data
head

\L/ Susan

Reese
Cosmo '~—§>mﬂl

18

Linked List Methods « 3ddToFront () - adds new node to beginning of LL

What if the Linked List is empty?

Linked List Methods « 3ddToFront () - adds new node to beginning of LL

What if the Linked List is empty?

Set head equal to the new node

head

V

Reese —1—» null

Linked List Methods « 3ddToFront () - adds new node to beginning of LL

What if the Linked List is not empty?

head

V

Reese 4 null

Linked List Methods « 3ddToFront () - adds new node to beginning of LL

What if the Linked List is not empty?

1. Set the new node’s next value to head

head

V

T M v,

Linked List Methods « 3ddToFront () - adds new node to beginning of LL

What if the Linked List is not empty?

1. Setthe new node’s next value to head
2. Update head to point to new node

head

T Moo

Linked List Methods « 3ddToFront () - adds new node to beginning of LL

public void addToFront(Node newNode) {

What if the Linked List is not empty? if(head == null) {
head = newNode;

}
1. Set the new node’s next value to head elseninode e ailentBheniil
2. Update head to point to new node Head = newNodes ’
head }

T M o,

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!
 But how do we know if a node is the last node 22?2

head

Susan ﬁ_._é Reese ——>> null

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!
 But how do we know if a node is the last node? If a node’s next value is null

head

Susan ﬁ_._é Reese ——>> null

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!
 But how do we know if a node is the last node? If a node’s next value is null

1. Traverse through the linked list until we find the last node

We will use a while loop to iterate through a Linked List

head - Start at the head node
- Keep on following pointers until we reach null

Susan ﬁ___é Reese 4 null

27

Linked List Methods e addToRack () —adds new node to end of LL

We need to find the end of the Linked List, but we don’t know how many Nodes there may be...

We need to find the last node!

 But how do we know if a node is the last node? If a node’s next value is null

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

head

Susan ﬁ___é

Reese

Cosmo

4null

Linked List Methods

e addToRack () —adds new node to end of LL

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

head

Susan

public void addToBack(Node newNode) {

Node current = head;
while(current.getNext() != null) {
current = current.getNext();

}

current.setNext(newNode) ;

Reese

Cosmo

4null

Linked List Methods e addToRack () —adds new node to end of LL

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

public void addToBack(Node newNode) {

Node current = head;
_ _ _ while(current.getNext() != null) {
This method will fail current = current.getNext();

if the LL is empty } |
head current.setNext(newNode) ;

Susan ﬁ__é Reese | ——>» | Cosmo — .

30

Linked List Methods * printLinkedList () — prints nodes and their data

Iterate through each Node in the LL, and print the data in that node

Linked List Methods * printLinkedList () — prints nodes and their data

Iterate through each Node in the LL, and print the data in that node

public void printLinkedList() {

Node current = head;

while(current != null) {
System.out.println(current.getData());
current = current.getNext();

Linked List Methods * printLinkedList () — prints nodes and their data

Iterate through each Node in the LL, and print the data in that node

public void printLinkedList() { Always start at the head node

Node current = head; “Keep on looping until we reach the end of the LL”
while(current != null)

System.out.println(current.getData());

current = current.getNext();
} -_\W\~__'.
This line updates the current node we are at

} ie. “move to the next node”

3

3

Linked List Methods e removeFirst () —removes first node of LL

head

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node

head

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node
2. Update the old head’s next value to be null

head

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node
2. Update the old head’s next value to be null

public void removeFirst() { J_) Create a new temporary variable to save 2" node value
Node temp = this.head.getNext();
head.setNext(null);
head = temp;

} head

e M o

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node
2. Update the old head’s next value to be null

There's an easier way to do this

head

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node

We don’t need to remove the pointer.

Remember, whenever we iterate or add

something to a list, we always start from the
head node

There's an easier way to do this

If a node is not reachable from the head, itis
essentially removed from the LL !!

head

e M o

Linked List Methods e removeFirst () —removes first node of LL

1. Update head to be the next node

We don’t need to remove the pointer.

Remember, whenever we iterate or add

something to a list, we always start from the
head node

There's an easier way to do this

public void removeFirst() {

if(size != 0) {

If a node is not reachable from the head, itis
e —_ head essentially removed from the LL !!
//Node temp = this.head.getNext();

//head..setNext (null); (we need to also check that there

//head = temp;

} Is something to be removed,
otherwise we get an error)

40

Linked List Methods ¢ removelLast () —removes last node of LL

?7?7?

Susan ~__> Reese

Cosmo

4 null

Linked List Methods ¢ removelast ()

1. Find the second to last node

2. Setthat node’s next valueto null

head

— removes last node of LL

Cosmo

4 null

Susan ﬁ_.%

Reese

Linked List Methods ¢ removelast ()

1. Find the second to last node

2. Setthat node’s next valueto null

head

— removes last node of LL

public void removelLast() {

Node current = head;

while(current.getNext().getNext() != null) {

current = current.getNext();

}

current.setNext(null);

Cosmo

4 null

Susan ﬁ_.%

Reese

Linked List Methods ¢ removelLast () —removes last node of LL

public void removelLast() {

Node current = head;

1. Fmd the Second to IaSt nOde while(current.getNext().getNext() != null) {
2. Setthat node’s next value to null } current = current.getNext();
current.setNext(null);
}
head Will this always work? Cosmo —f -

Susan ~_.% Reese 4 null

44

Linked List Methods ¢ removelLast () —removes last node of LL

public void removeLast() {

Node current = head;

1. Fmd the Second to IaSt nOde while(current.getNext().getNext() != null) {

2. Setthat node’s next value to null) current = current.getNext();

current.setNext(null);

}
fthe LL is empiy, or of size L, this
nead will esuit in a NulPointerException Cosmo | ——p

Susan ~_.% Reese % null

e M e,

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

