
CSCI 132:
Basic Data Structures and Algorithms

Linked Lists

Reese Pearsall & Iliana Castillon
Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

2

Announcements

Program 1 is due

Sunday at 11:59 PM

3

The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size

4

The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size

Very vague description. We can achieve

this functionality in several different ways

in java

5

The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size

Very vague description. We can achieve

this functionality in several different ways

in java

Any list should be able to:

• Get(index)

• Add(Element)

• Add(Element, index)

• Remove(Element)

• Remove(Index)

• Size()

• isEmpty()

6

The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size

Very vague description. We can achieve

this functionality in several different ways

in java

Any list should be able to:

• Get(index)

• Add(Element)

• Add(Element, index)

• Remove(Element)

• Remove(Index)

• Size()

• isEmpty()

A List Abstract Data Type (ADT)

describes what a list needs to do,

rather than how to implement it

7

The Pizza ADT

a dish of Italian origin consisting of a flat, round base of dough baked with

a topping of tomato sauce and cheese, typically with added meat or vegetables.

8

The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size

Very vague description. We can achieve

this functionality in several different ways

in java

Any list should be able to:

• Get(index)

• Add(Element)

• Add(Element, index)

• Remove(Element)

• Remove(Index)

• Size()

• isEmpty()

A List Abstract Data Type (ADT)

describes what a list needs to do,

rather than how to implement it

Implementations of a List:

• ArrayLists

• Linked Lists

9

Linked Lists

A Linked List is a data structure that consists of a collection of

connected nodes

Reese

Susan

Cosmo

Nodes consists of data (String, int, array, etc) and a pointer to the next node

10

Linked Lists

A Linked List is a data structure that consists of a collection of

connected nodes

Reese

Susan

Cosmo

Nodes consists of data (String, int, array, etc) and a pointer to the next node

A Linked List also has a pointer to the start of the Linked List (head)

head

11

Node.java LinkedList.java LinkedListDemo.java

Blueprint for a single node

in our data structure.

Nodes have data, and a

pointer to the next node

Reese

Collection of nodes

connected by pointers.

head pointer

size of linked list

Methods for adding,

removing, searching for

nodes

Creates the LinkedList

Calls methods to

manipulate Linked List

12

Reese

Susan

Cosmo

A Linked List will hold Node objects

Data

Pointer to

next Node

13

Reese
Cosmo

A Linked List will hold Node objects

System.out.println(reese.getNext().getData())

???

14

Reese
Cosmo

A Linked List will hold Node objects

System.out.println(reese.getNext().getData())

next

This would print out the Cosmo node’s data

15

Reese
Cosmo

A Linked List will hold Node objects

reese.setNext(susan)

???

Susan

next

16

Reese
Cosmo

A Linked List will hold Node objects

reese.setNext(susan)

Susan

next

Set’s the Reese’s node next value to point to Susan

The Cosmo node also got

removed from the linked list

(!!!)

17

Linked List Creation

Reese

Susan

Cosmo

head

null

18

Linked List Methods

• addToFront() - adds new node to beginning of LL

• addToBack() – adds new node to end of LL

• removeFirst() – removes first node of LL

• removeLast() – removes last node of LL

• printLinkedList() – prints nodes and their data

Reese

Susan

Cosmo

head

null

19

Linked List Methods • addToFront() - adds new node to beginning of LL

What if the Linked List is empty?

20

Linked List Methods • addToFront() - adds new node to beginning of LL

What if the Linked List is empty?

Reese

Set head equal to the new node

head

null

21

Linked List Methods • addToFront() - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null

22

Linked List Methods • addToFront() - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null

1. Set the new node’s next value to head

Susan

23

Linked List Methods • addToFront() - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null

1. Set the new node’s next value to head

2. Update head to point to new node

Susan

24

Linked List Methods • addToFront() - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null

1. Set the new node’s next value to head

2. Update head to point to new node

Susan

25

Linked List Methods • addToBack() – adds new node to end of LL

Reese nullSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!

• But how do we know if a node is the last node ???

26

Linked List Methods • addToBack() – adds new node to end of LL

Reese nullSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!
• But how do we know if a node is the last node? If a node’s next value is null

27

Linked List Methods • addToBack() – adds new node to end of LL

Reese nullSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!
• But how do we know if a node is the last node? If a node’s next value is null

1. Traverse through the linked list until we find the last node

We will use a while loop to iterate through a Linked List

- Start at the head node

- Keep on following pointers until we reach null

28

Linked List Methods • addToBack() – adds new node to end of LL

ReeseSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!
• But how do we know if a node is the last node? If a node’s next value is null

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

Cosmo null

29

Linked List Methods • addToBack() – adds new node to end of LL

ReeseSusan

head

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

Cosmo null

30

Linked List Methods • addToBack() – adds new node to end of LL

ReeseSusan

head

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node

Cosmo null

This method will fail

if the LL is empty

31

Linked List Methods • printLinkedList() – prints nodes and their data

Iterate through each Node in the LL, and print the data in that node

32

Linked List Methods • printLinkedList() – prints nodes and their data

Iterate through each Node in the LL, and print the data in that node

33

Linked List Methods • printLinkedList() – prints nodes and their data

Iterate through each Node in the LL, and print the data in that node

This line updates the current node we are at

ie. “move to the next node”

“Keep on looping until we reach the end of the LL”

Always start at the head node

34

Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

35

Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

36

Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

null

37

Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

null

Create a new temporary variable to save 2nd node value

38

Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

null

There's an easier way to do this

39

Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

There's an easier way to do this

We don’t need to remove the pointer.

Remember, whenever we iterate or add

something to a list, we always start from the
head node

If a node is not reachable from the head, it is

essentially removed from the LL !!

40

Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

There's an easier way to do this

We don’t need to remove the pointer.

Remember, whenever we iterate or add

something to a list, we always start from the
head node

If a node is not reachable from the head, it is

essentially removed from the LL !!

(we need to also check that there

is something to be removed,

otherwise we get an error)

41

Linked List Methods • removeLast() – removes last node of LL

ReeseSusan Cosmo null

???

42

Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null

43

Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null

44

Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null

Will this always work?

45

Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null

If the LL is empty, or of size 1, this

will result in a NullPointerException

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

