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Announcements

Program 1 is due 

Sunday at 11:59 PM 
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The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size
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The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size

Very vague description. We can achieve 

this functionality in several different ways 

in java

Any list should be able to:

• Get(index)

• Add(Element)

• Add(Element, index)

• Remove(Element)

• Remove(Index)

• Size()

• isEmpty() 

A List Abstract Data Type (ADT) 

describes what a list needs to do, 

rather than how to implement it



7

The Pizza ADT

a dish of Italian origin consisting of a flat, round base of dough baked with 

a topping of tomato sauce and cheese, typically with added meat or vegetables.
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The List ADT

A List is a linear, ordered collection of elements

• Can dynamically grow and shrink in size

Very vague description. We can achieve 

this functionality in several different ways 

in java

Any list should be able to:

• Get(index)

• Add(Element)

• Add(Element, index)

• Remove(Element)

• Remove(Index)

• Size()

• isEmpty() 

A List Abstract Data Type (ADT) 

describes what a list needs to do, 

rather than how to implement it

Implementations of a List:

• ArrayLists

• Linked Lists
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Linked Lists

A Linked List is a data structure that consists of a collection of 

connected nodes

Reese

Susan

Cosmo

Nodes consists of data (String, int, array, etc) and a pointer to the next node
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Linked Lists

A Linked List is a data structure that consists of a collection of 

connected nodes

Reese

Susan

Cosmo

Nodes consists of data (String, int, array, etc) and a pointer to the next node

A Linked List also has a pointer to the start of the Linked List (head)

head
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Node.java LinkedList.java LinkedListDemo.java

Blueprint for a single node 

in our data structure. 

Nodes have data, and a 

pointer to the next node

Reese

Collection of nodes 

connected by pointers. 

head pointer

size of linked list

Methods for adding, 

removing, searching for 

nodes

Creates the LinkedList

Calls methods to

manipulate Linked List
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Reese

Susan

Cosmo

A Linked List will hold Node objects

Data

Pointer to 

next Node
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Reese
Cosmo

A Linked List will hold Node objects

System.out.println(reese.getNext().getData())

???
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Reese
Cosmo

A Linked List will hold Node objects

System.out.println(reese.getNext().getData())

next

This would print out the Cosmo node’s data
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Reese
Cosmo

A Linked List will hold Node objects

reese.setNext(susan)

???

Susan

next
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Reese
Cosmo

A Linked List will hold Node objects

reese.setNext(susan)

Susan

next

Set’s the Reese’s node next value to point to Susan

The Cosmo node also got 

removed from the linked list 

(!!!)
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Linked List Creation

Reese

Susan

Cosmo

head

null
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Linked List Methods

• addToFront()  - adds new node to beginning of LL

• addToBack() – adds new node to end of LL

• removeFirst() – removes first node of LL

• removeLast() – removes last node of LL

• printLinkedList() – prints nodes and their data 

Reese

Susan

Cosmo

head

null
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Linked List Methods • addToFront()  - adds new node to beginning of LL

What if the Linked List is empty?
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Linked List Methods • addToFront()  - adds new node to beginning of LL

What if the Linked List is empty?

Reese

Set head equal to the new node

head

null
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Linked List Methods • addToFront()  - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null
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Linked List Methods • addToFront()  - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null

1. Set the new node’s next value to head

Susan
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Linked List Methods • addToFront()  - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null

1. Set the new node’s next value to head

2. Update head to point to new node

Susan
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Linked List Methods • addToFront()  - adds new node to beginning of LL

What if the Linked List is not empty?

Reese

head

null

1. Set the new node’s next value to head

2. Update head to point to new node

Susan
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Linked List Methods • addToBack() – adds new node to end of LL

Reese nullSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!  

• But how do we know if a node is the last node ???
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Linked List Methods • addToBack() – adds new node to end of LL

Reese nullSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!  
• But how do we know if a node is the last node?  If a node’s next value is null
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Linked List Methods • addToBack() – adds new node to end of LL

Reese nullSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!  
• But how do we know if a node is the last node?  If a node’s next value is null

1. Traverse through the linked list until we find the last node 

We will use a while loop to iterate through a Linked List

- Start at the head node

- Keep on following pointers until we reach null
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Linked List Methods • addToBack() – adds new node to end of LL

ReeseSusan

head

We need to find the end of the Linked List, but we don’t know how many Nodes there may be…

We need to find the last node!  
• But how do we know if a node is the last node?  If a node’s next value is null

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node 

Cosmo null
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Linked List Methods • addToBack() – adds new node to end of LL

ReeseSusan

head

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node 

Cosmo null
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Linked List Methods • addToBack() – adds new node to end of LL

ReeseSusan

head

1. Traverse through the linked list until we find the last node
2. Set the last node’s next value equal to the new node 

Cosmo null

This method will fail 

if the LL is empty 
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Linked List Methods • printLinkedList() – prints nodes and their data 

Iterate through each Node in the LL, and print the data in that node
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Linked List Methods • printLinkedList() – prints nodes and their data 

Iterate through each Node in the LL, and print the data in that node
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Linked List Methods • printLinkedList() – prints nodes and their data 

Iterate through each Node in the LL, and print the data in that node

This line updates the current node we are at

ie. “move to the next node”

“Keep on looping until we reach the end of the LL”

Always start at the head node
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Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null
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Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node
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Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

null
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Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

null

Create a new temporary variable to save 2nd node value
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Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

null

There's an easier way to do this
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Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

There's an easier way to do this

We don’t need to remove the pointer.

Remember, whenever we iterate or add 

something to a list, we always start from the 
head node

If a node is not reachable from the head, it is 

essentially removed from the LL !!
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Linked List Methods • removeFirst() – removes first node of LL

ReeseSusan

head

null

1. Update head to be the next node

2. Update the old head’s next value to be null

There's an easier way to do this

We don’t need to remove the pointer.

Remember, whenever we iterate or add 

something to a list, we always start from the 
head node

If a node is not reachable from the head, it is 

essentially removed from the LL !!

(we need to also check that there 

is something to be removed, 

otherwise we get an error)
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Linked List Methods • removeLast() – removes last node of LL

ReeseSusan Cosmo null

???
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Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null
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Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null
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Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null

Will this always work?
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Linked List Methods • removeLast() – removes last node of LL

ReeseSusan

Cosmo nullhead

1. Find the second to last node
2. Set that node’s next value to null

null

If the LL is empty, or of size 1, this 

will result in a NullPointerException
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