
CSCI 132:
Basic Data Structures and Algorithms

Linked Lists (Part 2)
Doubly Linked List

Reese Pearsall & Iliana Castillon
Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

2

Announcements

Program 2 (Circular Linked Lists)

• We will try to talk about it on

Friday

Lab 5 (Linked Lists)

• Due Thursday @ 11:59 PM

3

Linked Lists

A Linked List is a data structure that consists of a collection of

connected nodes

Reese

Susan

Spencer

Nodes consists of data (String, int, array, etc) and a pointer to the next node

4

Linked Lists

A Linked List is a data structure that consists of a collection of

connected nodes

Reese

Susan

Spencer

Nodes consists of data (String, int, array, etc) and a pointer to the next node

A Linked List also has a pointer to the start of the Linked List (head)

head

5

Linked Lists

A Singly Linked List only keeps track of the next node

Reese

Susan

Spencer

head

6

Linked Lists

A Singly Linked List only keeps track of the next node

Reese

Susan

Spencer

head

The tail of a linked list is a pointer to the last node

tail

7

Linked Lists

A Singly Linked List only keeps track of the next node

Reese

Susan

Spencer

head

The tail of a linked list is a pointer to the last node

tail

This makes adding to/removing from the end of a linked list easier

8

Linked Lists

A Doubly Linked List keeps track of the next node and the previous node

Reese

Susan

Spencer

next

prev

null

null

prev next

prev next

prev next

head tail

9

Linked Lists A Doubly Linked List keeps track of the next node and the previous node

Doubly Linked List Methods

• insert(newNode, N) – Insert new node at spot N

• remove(name) – Remove node by name

• remove(N) – Remove node by Spot #

• printReverse() – Prints LL in reverse order

10

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

11

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

LAX
Los Angeles

SEA
Seattle

BZN
Bozeman

ORD
Chicago

BOS
Bostonhead

12

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

1. Iterate through each line of the file

Scanner s = new Scanner(new FileReader(filename));
String line = "";
while(s.hasNext()){

}

13

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

1. Iterate through each line of the file

Scanner s = new Scanner(new FileReader(filename));
String line = "";
while(s.hasNext()){

}

“Iterate through each line in the file until we reach the end”

14

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

1. Iterate through each line of the file

2. Parse each line using .split()

while(s.hasNext()){
String line = s.nextLine();
String[] vals = line.split(",");

“LAX,Los Angeles” → LAX Los Angelesvals =

0 1

.split(“,”) will “split” the string everything it sees a comma, returns an array of the splitted string

15

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

1. Iterate through each line of the file

2. Parse each line using .split()

“LAX,Los Angeles” → LAX Los Angelesvals =

0 1

“SEA,Seattle” → SEA Seattlevals =

0 1

while(s.hasNext()){
String line = s.nextLine();
String[] vals = line.split(",");

16

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

1. Iterate through each line of the file

2. Parse each line using .split()

3. Create Node object using information from file

while(s.hasNext()){
String line = s.nextLine()
String[] vals = line.split(",");

String code = vals[0];
String location = vals[1];

Node n = new Node(code, location);
insert(n,size+1);

}

1

2

3

17

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

LAX,Los Angeles

SEA,Seattle

BZN,Bozeman

ORD,Chicago

BOS,Boston

airports.txt

1. Iterate through each line of the file

2. Parse each line using .split()

3. Create Node object using information from file

4. Insert at end of linked list

while(s.hasNext()){
String line = s.nextLine()
String[] vals = line.split(",");

String code = vals[0];
String location = vals[1];

Node n = new Node(code, location);
insert(n,size+1);

}

1

2

3

4

18

• insert(newNode, N) – Insert new node (newNode) at spot N

19

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

20

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

Case 2: The user is inserting a node at the very beginning (N = 1)

21

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

Case 2: The user is inserting a node at the very beginning (N = 1)

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

22

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

Case 2: The user is inserting a node at the very beginning (N = 1)

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

Case 4: The user is inserting a node somewhere in the middle of the LL

23

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

How do we know if the linked list is empty?

24

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

How do we know if the linked list is empty?

If the head and tail are null

If the size is 0

25

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

???

26

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

Set the tail and head to be the newNode

LAX

Los Angeles

prev next

nullnull

head tail

27

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

SEA

Seattle

prev next

null

head

LAX

Los Angeles

prev next

null

tail

BZN

Bozeman

prev next

newNode

???

28

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

prev next

head

LAX

Los Angeles

prev next

null

tail

prev next

newNode

Update the head node prev value to newNode

BZN

Bozeman

SEA

Seattle

29

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

prev next

head

LAX

Los Angeles

prev next

null

tail

prev next

newNode

Update the head node prev value to newNode

Update the newNode’s next value to be the current head node

BZN

Bozeman

SEA

Seattle

30

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

prev next

head

LAX

Los Angeles

prev next

null

tail

prev next

newNode

Update the head node prev value to newNode

Update the newNode’s next value to be the current head node

Update the head

node to be the
newNode

BZN

Bozeman

SEA

Seattle

31

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

prev next

LAX

Los Angeles

prev next

null

tail

prev next

newNode

BZN

Bozeman
SEA

Seattle

head

insert(newNode, 3)

32

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

prev next

LAX

Los Angeles

prev next

tail

prev next

newNode

BZN

Bozeman
SEA

Seattle

head

Update the tail node next value to newNode

33

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

prev next

LAX

Los Angeles

prev next

tail

prev next

newNode

BZN

Bozeman
SEA

Seattle

head

Update the tail node next value to newNode

Update the newNode’s prev value to be the current tail node

34

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize() + 1)

prev next

LAX

Los Angeles

prev next

tail

prev next

newNode

BZN

Bozeman
SEA

Seattle

head

Update the tail node next value to newNode

Update the newNode’s prev value to be the current tail node

Update the tail

node to be the
newNode

35

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

insert(newNode, 3)

LAX

Los Angeles

prev next

SEA

Seattle

prev next

BZN

Bozeman

prev next

ORD

Chicago

prev next

tailhead

36

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

37

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Reach the Nth node (current)

current

38

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Reach the Nth node (current)

2. Get the N-1 node (prevNode)

current
prevNode

(current.getPrev())

39

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Reach the Nth node (current)

2. Get the N-1 node (prevNode)

3. Update prevNode’s next pointer

current
prevNode

(current.getPrev())

40

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Reach the Nth node (current)

2. Get the N-1 node (prevNode)

3. Update prevNode’s next pointer

4. Update newNode’s prev pointer

current
prevNode

(current.getPrev())

41

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Reach the Nth node (current)

2. Get the N-1 node (prevNode)

3. Update prevNode’s next pointer

4. Update newNode’s prev pointer

current
prevNode

(current.getPrev())

5. Update newNode’s next pointer

42

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

newNode

1. Reach the Nth node (current)

2. Get the N-1 node (prevNode)

3. Update prevNode’s next pointer

4. Update newNode’s prev pointer

current
prevNode

(current.getPrev())

5. Update newNode’s next pointer

6. Update current’s prev pointer

43

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 1: The Linked List is Empty Case 2: The user is inserting a node at the very beginning (N = 1)

44

• insert(newNode, N) – Insert new node (newNode) at spot N

Case 3: The user is

inserting a node at the very
end (N = getSize() + 1)

Case 4: The user is inserting a node

somewhere in the middle of the LL

45

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

A Circular Linked List is a linked list where the first and last node are

connected, which creates a circle

46

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

47

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

48

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“SEA”)

What if the removed node is the head?

49

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“SEA”)

What if the removed node is the head?

2. Update the head to be the next node

50

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“SEA”)

What if the removed node is the head?

2. Update the head to be the next node

3. Update the new head’s prev value to be null

We can longer reach

the SEA node from the

head node, so it is

effectively removed

51

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“BZN”)

What if the removed node is the tail?

52

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“BZN”)

What if the removed node is the tail?

2. Update the tail to be the previous node

53

SEA

Seattle

prev next

BZN

Bozeman

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

head

1. Traverse the Linked List and look for a match

remove(“BZN”)

What if the removed node is the tail?

2. Update the tail to be the previous node

3. Update the new tail’s next value to be null

We can longer reach

the BZN node from the

head node, so it is

effectively removed

tail

54

SEA

Seattle

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“BOS”)

What if the removed node is somewhere in the middle?

BZN

Bozeman

prev next

55

SEA

Seattle

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“BOS”)

What if the removed node is somewhere in the middle?

2. Retrieve the previous node and next node of the to-be-removed node

BZN

Bozeman

prev next

prevNode nextNode

56

SEA

Seattle

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“BOS”)

What if the removed node is somewhere in the middle?

2. Retrieve the previous node and next node of the to-be-removed node
3. Update prevNode’s next value to be the nextNode

BZN

Bozeman

prev next

prevNode nextNode

57

SEA

Seattle

prev next

BOS

Boston

prev next

• remove(name) – Remove node by name

tailhead

1. Traverse the Linked List and look for a match

remove(“BOS”)

What if the removed node is somewhere in the middle?

2. Retrieve the previous node and next node of the to-be-removed node
3. Update prevNode’s next value to be the nextNode

4. Update nextNode’s prev value to be prevNode

BZN

Bozeman

prev next

prevNode nextNode

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

