y
CSCI 132:

Basic Data Structures and Algorithms

Linked Lists (Part 2)
Doubly Linked List

Reese Pearsall & lliana Castillon
Fall 2024

*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

Announcements

Linked List data structures be like:

Lab 5 (Linked Lists)
 Due Thursday @ 11:59 PM

when you ask stack overflow how
to get the first element in a linked
list
Program 2 (Circular Linked Lists)
« We will try to talk about it on

Friday

Linked Lists

A Linked List Is a data structure that consists of a collection of
connected nodes

Susan

Reese
Spencer

Nodes consists of data (String, int, array, etc) and a pointer to the next node

Linked Lists

A Linked List Is a data structure that consists of a collection of
connected nodes

head

\l/ Susan

R
eese Spencer

Nodes consists of data (String, int, array, etc) and a pointer to the next node
A Linked List also has a pointer to the start of the Linked List (head)

Linked Lists

A Singly Linked List only keeps track of the next node

head

J

Reese

Susan

N

Spencer

Linked Lists

A Singly Linked List only keeps track of the next node

head

J

Reese

Susan

tail

L

Spencer

The tail of alinked list is a pointer to the last node

Linked Lists

A Singly Linked List only keeps track of the next node

head

J

Reese

Susan

tail

L

Spencer

The tail of alinked list Iis a pointer to the last node

This makes adding to/removing from the end of a linked list easier

Linked Lists

A Doubly Linked List keeps track of the next node and the previous node

head

tail

null e.

Reese

Spencer

/ e \' \I/
prev next N

_—9 null

ext

Linked Lists A Doubly Linked List keeps track of the next node and the previous node

Doubly Linked List Methods

head tail

insert(HEWNOde, N) — Insert new node at spot N J/ J/
remOVE(name) — Remove node by name %’ o Q 15

remOVE(N) — Remove node by Spot # Spencer

ull e__ Reese -
prev next

printReverse() — Prints LL in reverse order ——> prev

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

airports.txt

LAX,Los Angeles
SEA, Seattle

BZN, Bozeman

ORD, Chicago

BOS, Boston

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

- BZN
alirports.txt
// Bozeman %
LAX,Los Angeles
ORD
SEA Chicago
Seattle
BOS
Los Angeles Boston

SEA, Seattle

BZN, Bozeman
ORD, Chicago

BOS, Boston

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

airports.txt

1. Iterate through each line of the file

LAX,Los Angeles

Scanner s = new Scanner(new FileReader(filename));

SEA, Seattle String line = "";
while(s.hasNext()){

BZN, Bozeman

ORD, Chicago }

BOS, Boston

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

airports.txt

1. Iterate through each line of the file

LAX,Los Angeles

Scanner s = new Scanner(new FileReader(filename));

SEA, Seattle String line = "";
le(s.hasNext()){
BZN, Bozeman

ORD, Chicago }

BOS, Boston

“Iterate through each line in the file until we reach the end”

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

airports.txt

1. Iterate through each line of the file

LAX,Los Angeles 2. Parse each line using .split ()

SEA, Seattle
while(s.hasNext()){

BZN, Bozeman String line = s.nextLine();
String[] vals = line.split(",");

ORD, Chicago

BOS, Boston 0 1
“LAX,Los Angeles” —>vals= LAX Los Angeles

.split (™, ”) will “split” the string everything it sees a comma, returns an array of the splitted string

14

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

airports.txt

1. Iterate through each line of the file

LAX,Los Angeles 2. Parse each line using .split ()

SEA, Seattle
while(s.hasNext()){

BZN, Bozeman String line = s.nextLine();
String[] vals = line.split(",");

ORD, Chicago

BOS, Boston 0 1
“LAX,Los Angeles” ->vals= LAX Los Angeles
0 1
“SEA, Seattle” - vals = SEA Seattle

e M o,

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library

1. Iterate through each line of the file

airports.txt
2. Parse each line using .split ()
LAX,Los Angeles

3. Create Node object using information from file
SEA, Seattle

0while(s.hasNext()){
B4N, Bozeman String line = s.nextLine()

9 String[] vals = line.split(",");

ORD, Chicago

String code = vals[@];
BOS, Boston e String location = vals[1];

Node n = new Node(code, location);
insert(n,size+l);

16

Java File I/O

Let’s read in node information from a file

There are tons of way to read from a file in Java. We will use the Scanner library
1. lterate through each line of the file

airports.txt

2. Parse each line using .split ()

LAX, Los Angeles _ . . .
3. Create Node object using information from file

SEA, Seattle 4. Insert at end of linked list
0while(s.hasNext()){
B4N, Bozeman String line = s.nextLine()

9 String[] vals = line.split(",");

ORD, Chicago

String code = vals[@];
BOS, Boston e String location = vals[1];

Node n = new Node(code, location);
e insert(n,size+l);

17

* insert (newNode, N) — Insert new node (newNode) at spot N

MONTANA
STATE UNIVERSITY

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

MONTANA

STATE UNIVERSITY

M

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

Case 2: The user is inserting a node at the very beginning (N = 1)

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

Case 2: The user is inserting a node at the very beginning (N = 1)

Case 3: The user is inserting a node at the very end (N = getSize () +1)

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

Case 2: The user is inserting a node at the very beginning (N = 1)

Case 3: The user is inserting a node at the very end (N = getSize () +1)

Case 4: The user is inserting a node somewhere in the middle of the LL

22

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

How do we know if the linked list iIs empty?

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

How do we know if the linked list iIs empty?

If the head and tail are null
If the size IS O

24

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

MONTANA

STATE UNIVERSITY

M

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 1: The Linked List is Empty

head tail

N

LAX

null €&—=— | Los Angeles | —>null

prev next

Setthe tail and head to be the newNode

26

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

head .
newNode tail

& SEA LAX
2 BZN <
o Bozeman nul) Seattle E Los Angeles —'9 null
prev next prev next prev next
79?7

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

head .
newNode tail

BZN é“ SEA é LAX

Bozeman Seattle Los Angeles —+—>null

+—>

prev next prev next prev next

D
T
—

Update the head node prev value to newNode

T Moo

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

head .
newNode tail

BZN é‘ SEA é LAX

Bozeman ; Seattle \ Los Angeles —+—>null

prev next prev next prev next

D
T
-

Update the head node prev value to newNode

Update the newNode’'s next value to be the current head node

29

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 2: The user is inserting a node at the very beginning (N = 1)

newNode head tail

LZL

BZN é SEA é LAX .
Bozeman ; Seattle E Los Angeles ——> nu

prev next prev next prev next

Update the head

node to be the
Update the newNode’'s next value to be the current head node newNode

T Moo

D
T
—

Update the head node prev value to newNode

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize () +1)

head tail newNode
5 SEA 3 LAX 3 BZN 5
% Seattle \ Los Angeles | =—> null “| Bozeman [T
prev next prev next prev next

insert (newNode, 3)

31

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize () +1)

head tail

newNode
5 SEA < LAX —% 2 BZN 2l
< v
<, Seattle : Los Angeles . Bozeman ,
prev next prev next prev next

Update the tail node next value to newNode

32

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize () +1)

head tail newNode

2 SEA < LAX —% BZN 2l
<, Seattle : Los Angeles é Bozeman -,

prev next prev next prev next

Update the tail node next value to newNode

Update the newNode’'s prev value to be the current tail node

33

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 3: The user is inserting a node at the very end (N = getSize () +1)

head tall newNode

2 SEA < LAX —% BZN 2l
<, Seattle : Los Angeles E Bozeman -,

prev next prev next prev next

Update the tail

node to be the
Update the newNode’'s prev value to be the current tail node newNode

34

Update the tail node next value to newNode

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

head tail
¥ \ 2
s LAX ORD >
c Chicago &
> | Los Angeles g >
\/
prev next prev next
z SEA =‘ BZN
Seattle (___ Bozeman
prev next prev next

insert (newNode, 3)

35

* insert (newNode, N)

— Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

SEA
Seattle

N N

prev

next

«— |

newNode

BZN
Bozeman

prev

BOS
Boston

prev next

next

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

current
SEA BZN
Seattle e\—’— Bozeman

newNode
prev next prev next
BOS
Boston
1. Reach the Nth node (current)
prev next

37

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

current
SEA BZN
Seattle Bozeman
newNode
prev next prev next
BOS
Boston
1. Reach the Nth node (current)
2. Getthe N-1 node ()
(current.getPrev ()) prev next

38

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

current
SEA BZN
Seattle Bozeman
newNode
prev next prev next
BOS
Boston
1. Reach the Nth node (current)
2. Getthe N-1 node ()
(current.getPrev ()) prev next

3. Update prevNode’s next pointer

39

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

current
SEA BZN
Seattle Bozeman
newNode
prev next [prev next
BOS
Boston
1. Reach the Nth node (current)
2. Getthe N-1 node ()
(current.getPrev ()) prev next

3. Update prevNode’s next pointer
4. Update newNode’s prev pointer

40

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

current
SEA BZN
Seattle Bozeman
newNode
prev next | prev next
BOS
Boston
1. Reach the Nth node (current) 5. Update newNode's next pointer
2. Getthe N-1 node ()
(current.getPrev ()) prev next

3. Update prevNode’s next pointer
4. Update newNode’s prev pointer

41

* insert (newNode, N) — Insert new node (newNode) at spot N

Case 4: The user is inserting a node somewhere in the middle of the LL

current
SEA / BZN
Seattle Bozeman
newNode
prev next [prev next
BOS
Boston
1. Reach the Nth node (current) 5. Update newNode’s next pointer
2. Getthe N-1 node () 6. Update current’s prev pointer
(current.getPrev ()) prev next

3. Update prevNode’s next pointer
4. Update newNode’s prev pointer

42

* insert (newNode, N) — Insert new node (newNode) at Spot N public void insert(Node newhode, int n) {

Case 1: The Linked List is Empty

//Case #1 Linked List 1s empty
1f(this.size == 9) {
this.head = newNode;
this.tail = newNode;

Case 2: The user is inserting a node at the very beginning (N = 1)

//Case #2 Insert at the beginning
else if(n == 1) {

this.head.setPrev(newhNode);
newNode.setNext(this.head);
this.head = newNode;

* insert (newNode, N) — Insert new node (newNode) at Spot N public void insert(Node newhode, int n) {

Case 3: The user is

Inserting a node at the very
end (N =getSize () +1)

Case 4: The user Is inserting a node
somewhere in the middle of the LL

//Case #4 Insert somewhere in the middle

else {
_f/{:ase #3 Insert at the end Node current = this.head;
else if(n == this.size+l) { //get to node N

for(int i = @; i < n-1;i++) {
current = current.getNext();

this.tail.setNext(newNode); }
newNode.setPrev(this.tail);

A . Node prevNode = current.getPrev();
this.tail = newNode;

current.setPrev(newNode);
newNode.setNext(current);

prevNode.setNext(newNode);
newNode.setPrev(prevNode);

}

this.size++;

44

A Circular Linked List is a linked list where the first and last node are
connected, which creates a circle

P . S

L1 Ml

LAX

head — PEHLGECEIES H

BOS
Boston € tail

4

5

° remOve(name) — Remove node by name

hjjd
2 SEA ’
°, Seattle E

next

BOS
Boston

prev

next

tail

¥

BZN
Bozeman

prev

next

° remOve(name) — Remove node by name

hj;ad
2 SEA ’
°, Seattle E

next

BOS
Boston

prev

next

1. Traverse the Linked List and look for a match

tail

¥

BZN
Bozeman

prev

next

° remOve(namE) — Remove node by name

BOS
Boston

hj;ad
3 SEA ’
(!
°, Seattle E
prev next prev

next

1. Traverse the Linked List and look for a match

remove (“SEA")

What if the removed node is the head?

tail

¥

BZN
Bozeman

prev

next

° remOve(namE) — Remove node by name

hjfd tail
3 SEA ’ BOS e BZN 2
© v
°, Seattle ¢ Boston é Bozeman =
prev next prev next prev next

1. Traverse the Linked List and look for a match
remove (“SEA")
What if the removed node is the head?

2. Update the head to be the next node

T M oy

° remOve(name) — Remove node by name

hjfd tail
B SEA > 5 BOS > BZN 3
© | Seattle - | Boston ¢ Bozeman |

prev next prev next prev next

1. Traverse the Linked List and look for a match

remove (“SEA”) We can longer reach
What if the removed node is the head? the SEA node f_rqm the
2. Update the head to be the next node head node, so it Is

3. Update the new head’s prev value to be null effectively removed

T Movovmana

° remove(namE) — Remove node by name

BOS
Boston

hjfd
3 SEA ’
&
°, Seattle E
prev next prev

1. Traverse the Linked List and look for a match

remove (“BZN")

What if the removed node is the tail?

tail

N

BZN 2
Bozeman e

prev

next

° remOve(namE) — Remove node by name

h T d tail
3 SEA ’ BOS e BZN 2
© v
°, Seattle ¢ Boston é Bozeman =
prev next prev next prev next

1. Traverse the Linked List and look for a match
remove (“BZN")
What if the removed node is the tail?

2. Update the tail to be the previous node

S MWMoNmans

° remOve(name) — Remove node by name

hjfd tail
. SEA - BOS 2 BZN 3
| Seattle ¢ Boston ap: Bozeman |
prev next prev next prev next
1. Traverse the Linked List and look for a match
remove (“BZN”) We can longer reach
What if the removed node is the tail? the BZN node from the

head node, so it Is

2. Update the tail to be the previous node effectively removed

3. Update the new tail’s next value to be null

T Movovmana

° remOve(namE) — Remove node by name

BOS
Boston

hjfd
3 SEA ’
&
°, Seattle E
prev next prev

1. Traverse the Linked List and look for a match

remove (“BOS”)

tail

J

BZN 2
Bozeman e

prev

What if the removed node is somewhere in the middle?

next

° remOve(name) — Remove node by name

head prevNode nextNode tail
2 SEA ’ BOS e BZN 2
\g
°, Seattle ¢ Boston é Bozeman =
prev next prev next prev next

1. Traverse the Linked List and look for a match
remove (“BOS”)
What if the removed node is somewhere in the middle?

2. Retrieve the previous node and next node of the to-be-removed node

95

° remOve(namE) — Remove node by name

head prevNode nextNode tail
5 SEA //Bj -— > BZN |2
\g
°, Seattle ¢ Boston é Bozeman =
prev next prev next prev next

1. Traverse the Linked List and look for a match
remove (“BOS”)

What if the removed node is somewhere in the middle?

2. Retrieve the previous node and next node of the to-be-removed node
3. Update prevNode’'s next value to be the nextNode

56

° remOve(name) — Remove node by name

head prevNode nextNode tail
% —)/Bj QIBZN)

v
°, Seattle ¢ Boston Bozeman =

Prev next wev next

1. Traverse the Linked List and look for a match
remove (“BOS”)
What if the removed node is somewhere in the middle?

2. Retrieve the previous node and next node of the to-be-removed node
3. Update prevNode’'s next value to be the nextNode

4. Update nextNode’s prev value to be prevNode

57

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57

