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Announcements

Program 2 Posted

• Due two weeks from now
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Linked Lists

A Linked List is a data structure that consists of a collection of 

connected nodes
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Nodes consists of data (String, int, array, etc) and a pointer to the next node
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Linked Lists

A Doubly Linked List keeps track of the next node and the previous node 
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A Circular Linked List is a linked list where the first and last node are 

connected, which creates a circle
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Traversing a Circular Linked List public void printList() {
Node current = this.head;
while(current != null) {

current.printNode();
current = current.getNext();

}
}

This was our previous 

code for traversing and 

printing out nodes in a 

linked list 

This will no longer work because…
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Traversing a Circular Linked List public void printList() {
Node current = this.head;
while(current != null) {

current.printNode();
current = current.getNext();

}
}

This was our previous 

code for traversing and 

printing out nodes in a 

linked list 

This will no longer work because…

We will never 
reach null
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Traversing a Circular Linked List

Suppose our goal is 

to print out each 

node only once
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Traversing a Circular Linked List

Suppose our goal is 

to print out each 

node only once

How do we know that 

we’ve reached the 

“end” of the CLL ?
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Traversing a Circular Linked List

Suppose our goal is 

to print out each 

node only once

How do we know that 

we’ve reached the 

“end” of the CLL ?

If we start from the head, we should stop looping 

once we reach the head again
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Traversing a Circular Linked List If we start from the head, we 

should stop looping once we 
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}
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Traversing a Circular Linked List If we start from the head, we 

should stop looping once we 
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

This won’t work because…
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Traversing a Circular Linked List If we start from the head, we 

should stop looping once we 
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

This won’t work because… The head node will never be printed out
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Traversing a Circular Linked List If we start from the head, we 

should stop looping once we 
reach the head again

public void printLinkedList() {
Node current = this.head;
do {

current.printNode();
current = current.getNext();

}
while(current != this.head);

}

A do/while loop executed the body of the loop, and then checks the looping condition
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