
CSCI 132:
Basic Data Structures and Algorithms

Linked Lists (Part 4)
Circular Linked Lists, Program 2

Reese Pearsall & Iliana Castillon
Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

2

Announcements

Program 2 Posted

• Due two weeks from now

3

Linked Lists

A Linked List is a data structure that consists of a collection of

connected nodes

Reese

Susan

Sarah

Nodes consists of data (String, int, array, etc) and a pointer to the next node

4

Linked Lists

A Doubly Linked List keeps track of the next node and the previous node

Reese

Susan

Spencer

next

prev

null

null

prev next

prev next

prev next

head tail

5

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

A Circular Linked List is a linked list where the first and last node are

connected, which creates a circle

6

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List public void printList() {
Node current = this.head;
while(current != null) {

current.printNode();
current = current.getNext();

}
}

This was our previous

code for traversing and

printing out nodes in a

linked list

This will no longer work because…

7

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List public void printList() {
Node current = this.head;
while(current != null) {

current.printNode();
current = current.getNext();

}
}

This was our previous

code for traversing and

printing out nodes in a

linked list

This will no longer work because…

We will never
reach null

8

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List

Suppose our goal is

to print out each

node only once

9

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List

Suppose our goal is

to print out each

node only once

How do we know that

we’ve reached the

“end” of the CLL ?

10

LAX
Los Angeles

SEA
Seattle

ORD
Chicago

BOS
Bostonhead

BZN
Bozeman

tail

Traversing a Circular Linked List

Suppose our goal is

to print out each

node only once

How do we know that

we’ve reached the

“end” of the CLL ?

If we start from the head, we should stop looping

once we reach the head again

11

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

12

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

This won’t work because…

13

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head.getNext();
while(current != this.head) {

current.printNode();
current = current.getNext();

}
}

This won’t work because… The head node will never be printed out

14

LAX
Los

Angeles

SEA
Seattle

ORD
Chicago

BOS
Boston

head

BZN
Bozeman

tail

Traversing a Circular Linked List If we start from the head, we

should stop looping once we
reach the head again

public void printLinkedList() {
Node current = this.head;
do {

current.printNode();
current = current.getNext();

}
while(current != this.head);

}

A do/while loop executed the body of the loop, and then checks the looping condition

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

