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A stack is a data structure that can hold data, however the 

way we interact with a stack is a little bit different
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A stack is a data structure that can hold data, however the 
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A stack is a data structure that can hold data, however the 

way we interact with a stack is a little bit different
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Spencer
Removing an 

element is known as 

the pop operation

stack.pop() → Top node (spencer) is removed



A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

We can:

• Add an element to the top of the stack (push)

• Remove the top element (pop)

Stack Operations
push()
pop()
peek()
isEmpty()
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A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements
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Which should you pick?
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Which should you pick?
• Depends on how you are using the stack
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Which should you pick?
• If you know how big the stack 

needs to be

→ Array

• If you don’t know how big the stack 

needs to be

→ Linked List
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A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements 

(Array/LinkedList)

2. Something that points 

the current top element 

of the stack

3. The size of the stack



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()
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Here, we’ve created an array of size 8 to hold our stack data
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always be at index 0, and grows

towards the higher indices

When the stack is empty, the index of the bottom 

of the stack, and the index of the top of the stack 

will be the same

top_of_stack = 0

String[] data = new String[8]

The size of the stack will start at 0 size = 0
Top of Stack
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Here, we’ve created an array of size 8 to hold our stack data
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}
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size++

if stack if full: return
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Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++
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stack.push(“Susan”)
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Stack Instance Fields

public void push(newElement){

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

}
stack.push(“Susan”)

Susan
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Stack Instance Fields

public void push(newElement){

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

}
stack.push(“Susan”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

24

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

stack.push(“Susan”)
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Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

Cosmo

stack.push(“Cosmo”)
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Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

Cosmo

stack.push(“Cosmo”)
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Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

stack.push(“Cosmo”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()
public void pop(){
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Susan 1 remove the element on the

Reese 0 top of the stack

}

Here, we’ve created an array of size 8 to hold our stack data

String[] data = new String[8]

top_of_stack = 2

size = 3

Top of Stack
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Stack Instance Fields
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Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null 
top_of_stack--
size--

stack.pop()
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Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null
top_of_stack-- 
size--

stack.pop()
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Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null
top_of_stack--
size--

stack.pop()
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Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null 
top_of_stack--
size--

stack.pop()
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Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null 
top_of_stack--
size--

Note: This method does not return the element that was 
removed, however there may be times where the pop() 
method returns the element that got removed
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Stack Instance Fieldspublic String peek(){

}

The peek()method returns the 

element that is currently on the top 

of the stack
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Stack Instance Fieldspublic String peek(){

}

The peek()method returns the 

element that is currently on the top 

of the stack

If stack is not empty: return 
data[top_of_stack]
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Stack Instance Fieldspublic boolean isEmpty(){

}

The isEmpty()method returns a 

boolean: true if the stack is empty, 

false if the stack is not empty

if size == 0:
return true

else:
return false
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