
CSCI 132:
Basic Data Structures and Algorithms

Stacks (Array Representation)

Reese Pearsall & Iliana Castillon 

Spring 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html


A stack is a data structure that can hold data, however the 

way we interact with a stack is a little bit different

Susan

Cosmo

Elements of 

Data Structure

Top of

Stack

Reese

2



A stack is a data structure that can hold data, however the 

way we interact with a stack is a little bit different

Susan

Cosmo

Elements of 

Data Structure

Top of

Stack

Spencer

When only interact with the top of

the stack.

Reese

3

If we want to add a new element, 

we must put it on the top of the 

stack



A stack is a data structure that can hold data, however the 

way we interact with a stack is a little bit different

Susan

Cosmo

Elements of 

Data Structure

Reese

4

Top of

StackSpencer

Adding something to 

a stack is known as 

the push operation



A stack is a data structure that can hold data, however the 

way we interact with a stack is a little bit different

Susan

Cosmo

Elements of 

Data Structure

Reese

5

Top of

StackSpencer

If we want to remove 

something, we must always 

remove the element on the top 

of the stack



A stack is a data structure that can hold data, however the 

way we interact with a stack is a little bit different

Reese

Susan

Cosmo

Elements of 

Data Structure

6

Top of 

Stack

Spencer
Removing an 

element is known as 

the pop operation

stack.pop() → Top node (spencer) is removed



A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

We can:

• Add an element to the top of the stack (push)

• Remove the top element (pop)

Stack Operations
push()
pop()
peek()
isEmpty()

7



Reese

Susan

Cosmo

Elements of 

Data Structure

8

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements



Reese

Susan

Cosmo

Elements of 

Data Structure

9

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array



Reese

Susan

Cosmo

Elements of 

Data Structure

10

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList



Reese

Susan

Cosmo

Elements of 

Data Structure

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList
Susan

Cosmo

Spencer

3.

Linked 

List

Reese

11



Reese

Susan

Cosmo

Elements of 

Data Structure

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList
Susan

Cosmo

Spencer

3.

Linked 

List

Reese

12

Which should you pick?



Reese

Susan

Cosmo

Elements of 

Data Structure

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList
Susan

Cosmo

Spencer

3.

Linked 

List

Reese

13

Which should you pick?
• Depends on how you are using the stack



Reese

Susan

Cosmo

Elements of 

Data Structure

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements

We have a few options:

Spencer

Cosmo

Susan

Reese

1. Array

2. ArrayList

Reese

Susan

Cosmo

Spencer

3.

Linked 

List

14

Which should you pick?
• If you know how big the stack 

needs to be

→ Array

• If you don’t know how big the stack 

needs to be

→ Linked List



Reese

Susan

Cosmo

Elements of 

Data Structure

15

Top of 

StackSpencer

A stack is a data structure that can hold data, and follows 

the last in first out (LIFO) principle

Our stack data structure 

needs to keep track of a 

few things

1. Something to hold our 

stack elements 

(Array/LinkedList)

2. Something that points 

the current top element 

of the stack

3. The size of the stack



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

16

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

17

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

The bottom of the stack will

always be at index 0, and grows

towards the higher indices

When the stack is empty, the index of the bottom 

of the stack, and the index of the top of the stack 

will be the same

top_of_stack = 0

String[] data = new String[8]

The size of the stack will start at 0 size = 0
Top of Stack



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

18

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 0

size = 0

Top of Stack

Stack Instance Fields

public void push(newElement){

}



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

19

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 0

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

20

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 0

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 0

size = 1

Top of Stack

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

Susan

21

stack.push(“Susan”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 1

Top of Stack

22

Stack Instance Fields

public void push(newElement){

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

}
stack.push(“Susan”)

Susan



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 1

Top of Stack

23

Stack Instance Fields

public void push(newElement){

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

}
stack.push(“Susan”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

24

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

stack.push(“Susan”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

25

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

Cosmo

stack.push(“Cosmo”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 2

size = 2

Top of Stack

26

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

Cosmo

stack.push(“Cosmo”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Cosmo

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 2

size = 3

Top of Stack

27

Stack Instance Fields

public void push(newElement){

}

if stack is empty:
place newElement at current top_of_stack
size++

if stack if full: return

else:
top_of_stack++;
place newElement at index top_of_stack
size++

stack.push(“Cosmo”)



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()
public void pop(){

7

6

5

4

3

Cosmo 2 The pop method will always
Susan 1 remove the element on the

Reese 0 top of the stack

}

Here, we’ve created an array of size 8 to hold our stack data

String[] data = new String[8]

top_of_stack = 2

size = 3

Top of Stack

28

Stack Instance Fields



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

Cosmo

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 2

size = 3

Top of Stack

29

Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null 
top_of_stack--
size--

stack.pop()



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 2

size = 3

Top of Stack

30

Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null
top_of_stack-- 
size--

stack.pop()



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 3

Top of Stack

31

Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null
top_of_stack--
size--

stack.pop()



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

32

Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null 
top_of_stack--
size--

stack.pop()



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

33

Stack Instance Fieldspublic void pop(){

}

if stack is empty: return

Set index top_of_stack to be null 
top_of_stack--
size--

Note: This method does not return the element that was 
removed, however there may be times where the pop() 
method returns the element that got removed



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

34

Stack Instance Fieldspublic String peek(){

}

The peek()method returns the 

element that is currently on the top 

of the stack



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

35

Stack Instance Fieldspublic String peek(){

}

The peek()method returns the 

element that is currently on the top 

of the stack

If stack is not empty: return 
data[top_of_stack]



Stack Implementation (Array) To Do List:

• Push()

• Pop()

• Peek()

• IsEmpty()

null

Susan

Reese

Here, we’ve created an array of size 8 to hold our stack data

7

6

5

4

3

2

1

0

String[] data = new String[8]

top_of_stack = 1

size = 2

Top of Stack

36

Stack Instance Fieldspublic boolean isEmpty(){

}

The isEmpty()method returns a 

boolean: true if the stack is empty, 

false if the stack is not empty

if size == 0:
return true

else:
return false


	Slide 1: CSCI 132:
	Slide 2: A stack is a data structure that can hold data, however the way we interact with a stack is a little bit different
	Slide 3: A stack is a data structure that can hold data, however the way we interact with a stack is a little bit different
	Slide 4: A stack is a data structure that can hold data, however the way we interact with a stack is a little bit different
	Slide 5: A stack is a data structure that can hold data, however the way we interact with a stack is a little bit different
	Slide 6: A stack is a data structure that can hold data, however the way we interact with a stack is a little bit different
	Slide 7: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 8: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 9: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 10: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 11: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 12: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 13: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 14: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 15: A stack is a data structure that can hold data, and follows the last in first out (LIFO) principle
	Slide 16: Stack Implementation (Array)
	Slide 17: Stack Implementation (Array)
	Slide 18: Stack Implementation (Array)
	Slide 19: Stack Implementation (Array)
	Slide 20: Stack Implementation (Array)
	Slide 21: Stack Implementation (Array)
	Slide 22: Stack Implementation (Array)
	Slide 23: Stack Implementation (Array)
	Slide 24: Stack Implementation (Array)
	Slide 25: Stack Implementation (Array)
	Slide 26: Stack Implementation (Array)
	Slide 27: Stack Implementation (Array)
	Slide 28: Stack Implementation (Array)
	Slide 29: Stack Implementation (Array)
	Slide 30: Stack Implementation (Array)
	Slide 31: Stack Implementation (Array)
	Slide 32: Stack Implementation (Array)
	Slide 33: Stack Implementation (Array)
	Slide 34: Stack Implementation (Array)
	Slide 35: Stack Implementation (Array)
	Slide 36: Stack Implementation (Array)

