
CSCI 132:
Basic Data Structures and Algorithms

Queues (Linked List & Array implementation)

Reese Pearsall & Iliana Castillon

Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

toString() : Java method used to provide a string representation of an object

By default, it returns a string that consists of:
ClassName@hascode (memory address)

public class Demo {

public static void main(String[] args) {
Person iliana = new Person("Iliana", 80);
System.out.println(iliana);

}
}

public class Person {
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}
}

Person.java Demo.java

2

toString() : Java method used to provide a string representation of an object

By default, it returns a string that consists of:
ClassName@hascode (memory address)

public class Demo {

public static void main(String[] args) {
Person iliana = new Person("Iliana", 80);
System.out.println(iliana);

}
}

public class Person {
private String name;
private int age;

public Person(String name, int age) {
this.name = name;
this.age = age;

}

@Override
public String toString() {
return name + " is " + age + " years old";

}
}

Person.java Demo.java

3

A Queue is a data structure that holds data, but operates in a First-in First-out

(FIFO) fashion

Once again, we need a data structure

to hold the data of the queue

• Linked List (today)

• Array (today & Wednesday)

Elements get added to the Back of

the Queue.

Elements get removed from the
Front of the queue

4

A Queue is a data structure that holds data, but operates in a First-in First-out

(FIFO) fashion

The Queue ADT has the following methods:

Enqueue- Add new element to the queue

Dequeue- Remove element from the queue

** Always remove the front-most element

Peek()- Return the element that is at the front of the queue

IsEmpty() – Returns true if queue is empty, returns false is queue is not empty

5

A Queue is a data structure that holds data, but operates in a First-in First-out (FIFO) fashion

Queue
FrontBack

CosmoSpencerMatt

Tail

6

Head

Linked List Implementation

When we enqueue, we add the element to the end of the linked list

When we dequeue, we remove the element from the beginning of the linked list

A Queue is a data structure that holds data, but operates in a First-in First-out (FIFO)

fashion

Queue
FrontBack

CosmoSpencerMatt

As we use our queue, we might need to keep track of a few things

- The size of the queue

7

- The front of the queue (not when we use LLs)

- The back of the queue (not when we use LLs)

8

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

9

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

We need to keep track

of a few things:

1. The index of the

front of the queue

2. The index of the

rear of the queue

3. The size of the

queue

4. The capacity of

the queue

the queuerear = 0size = 0

1
0

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

We need to keep track

of a few things:

1. The index of the

front of the queue

2. The index of the

rear of the queue

3. The size of the

queue

4. The capacity ofcapacity = 6 front = 0

rear = 0size = 0

1
1

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Tom

Order
Jane

rear = 1size = 2

9

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Tom

Order
Jane

rear = 1size = 2

10

Enqueue?

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

rear = 1size = 2

11

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 2

Order
Tom

Order
Jane

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
John

15

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 2

front = 0

rear = 2

this.data[rear] = newOrder;

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;

this.size++;
}

}

Order
Tom

Order
Jane

Order
John

16

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

this.size++;

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;

}
}

Order
Tom

Order
Jane

Order
John

rear = 2size = 3

14

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
Tom

Order
Jane

Order
John

rear = 2size = 3

15

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
Tom

Order
Jane

Order
John

Order
Cosmo

front = 0capacity = 6

rear = 2size = 3

16

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
Tom

Order
Jane

Order
John

Order
Cosmo

front = 0capacity = 6

rear = 3size = 3

17

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

this.data[rear] = newOrder;

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;

this.size++;
}

}

Order
Tom

Order
Jane

Order
John

Order
Cosmo

front = 0capacity = 6

rear = 3size = 3

18

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

this.size++;

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;

}
}

Order
Tom

Order
Jane

Order
John

Order
Cosmo

rear = 3size = 4

19

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

public void enqueue(Order newOrder) {
if(rear == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6

20

Issues with this?

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

if(rear == capacity)

public void enqueue(Order newOrder) {
{

System.out.println("full...");
return;

}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6 bounds

21

This if statement is not

satisfied, so we will try to
add to a full queue →

Array index out of

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

if(size == capacity)

public void enqueue(Order newOrder) {
{

System.out.println("full...");
return;

}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6

22

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6

23

Dequeue?

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6

24

Remove the front element,

move front pointer forward

one spot

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6

25

Remove the front element,

move front pointer forward

one spot

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Enqueue again?

public void enqueue(Order newOrder) {
if(size == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

rear = 5size = 6

26

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Enqueue again?

public void enqueue(Order newOrder) {
if(size == capacity) {

System.out.println("full..."); return;
}
else {

rear++;
this.data[rear] = newOrder;
this.size++;

}
}

front = 0capacity = 6

rear = 5size = 6

27

Array index out of bounds error!

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
Tom

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

front = 0capacity = 6

rear = 5size = 6

28

Dequeue?

1. Remove the front element

2. Make some room in the back

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6

29

Dequeue?

1. Remove the front element

2. Make some room in the back

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

rear = 5size = 6

30

Dequeue?

1. Remove the front element

2. Make some room in the back

Shift all of our data over one spot

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

front = 0capacity = 6

rear = 4size = 5

31

Dequeue?

1. Remove the front element

2. Make some room in the back

Shift all of our data over one spot

The front of our

queue will always

stay at zero

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

front = 0capacity = 6

rear = 4size = 5

32

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

33

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6 front = 0

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

rear = 4size = 5

34

Shift everything over one spot

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
Jane

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

35

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

36

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

37

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 5size = 5

38

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

39

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Leo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

40

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Leo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

41

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

42

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Order
Juliet

front = 0capacity = 6

rear = 4size = 5

43

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

front = 0capacity = 6

rear = 4size = 5

44

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

front = 0capacity = 6

rear = 4size = 5

45

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}

this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

front = 0capacity = 6

rear = 4size = 5

46

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}

this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

front = 0capacity = 6

rear = 3size = 4

47

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
John

Order
Cosmo

Order
Leo

Order
Juliet

front = 0capacity = 6

rear = 3size = 4

48

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

Order
Cosmo

Order
Leo

Order
Juliet

Order
Juliet

front = 0capacity = 6

rear = 3size = 4

50

public void dequeue() {
if(this.size == 0) {

System.out.println("empty..."); return;
}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 4

front = 0

rear = 3

Order
Cosmo

Order
Leo

Order
Juliet

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

51

0 1 2 3 4 5

Today, we will be implementing a Queue with an Array.

Suppose that we have a queue that can hold 6 elements

capacity = 6

size = 3

front = 0

rear = 2

public void dequeue() {
if(this.size == 0) {

System.out.println("empty...");
return;

}
else {

for(int i = 0; i < back-1; i++) {
this.orders[i] = this.orders[i+1];

}
if(back < capacity) {

this.orders[back] = null;
}
this.back--;
this.size--;

}
}

Order
Cosmo

Order
Leo

Order
Juliet

54

55

Lab 8

	Slide 1: CSCI 132:
	Slide 2: toString() : Java method used to provide a string representation of an object
	Slide 3: toString() : Java method used to provide a string representation of an object
	Slide 4: A Queue is a data structure that holds data, but operates in a First-in First-out (FIFO) fashion
	Slide 5: A Queue is a data structure that holds data, but operates in a First-in First-out (FIFO) fashion
	Slide 6
	Slide 7: A Queue is a data structure that holds data, but operates in a First-in First-out (FIFO) fashion
	Slide 8: Today, we will be implementing a Queue with an Array.
	Slide 9: Today, we will be implementing a Queue with an Array.
	Slide 10: Today, we will be implementing a Queue with an Array.
	Slide 11: Today, we will be implementing a Queue with an Array.
	Slide 12: Today, we will be implementing a Queue with an Array.
	Slide 13: Today, we will be implementing a Queue with an Array.
	Slide 14: Today, we will be implementing a Queue with an Array.
	Slide 15: Today, we will be implementing a Queue with an Array.
	Slide 16: Today, we will be implementing a Queue with an Array.
	Slide 17: Today, we will be implementing a Queue with an Array.
	Slide 18: Today, we will be implementing a Queue with an Array.
	Slide 19: Today, we will be implementing a Queue with an Array.
	Slide 20: Today, we will be implementing a Queue with an Array.
	Slide 21: Today, we will be implementing a Queue with an Array.
	Slide 22: Today, we will be implementing a Queue with an Array.
	Slide 23: Today, we will be implementing a Queue with an Array.
	Slide 24: Today, we will be implementing a Queue with an Array.
	Slide 25: Today, we will be implementing a Queue with an Array.
	Slide 26: Today, we will be implementing a Queue with an Array.
	Slide 27: Today, we will be implementing a Queue with an Array.
	Slide 28: Today, we will be implementing a Queue with an Array.
	Slide 29: Today, we will be implementing a Queue with an Array.
	Slide 30: Today, we will be implementing a Queue with an Array.
	Slide 31: Today, we will be implementing a Queue with an Array.
	Slide 32: Today, we will be implementing a Queue with an Array.
	Slide 33: Today, we will be implementing a Queue with an Array.
	Slide 34: Today, we will be implementing a Queue with an Array.
	Slide 35: Today, we will be implementing a Queue with an Array.
	Slide 36: Today, we will be implementing a Queue with an Array.
	Slide 37: Today, we will be implementing a Queue with an Array.
	Slide 38: Today, we will be implementing a Queue with an Array.
	Slide 39: Today, we will be implementing a Queue with an Array.
	Slide 40: Today, we will be implementing a Queue with an Array.
	Slide 41: Today, we will be implementing a Queue with an Array.
	Slide 42: Today, we will be implementing a Queue with an Array.
	Slide 43: Today, we will be implementing a Queue with an Array.
	Slide 44: Today, we will be implementing a Queue with an Array.
	Slide 45: Today, we will be implementing a Queue with an Array.
	Slide 46: Today, we will be implementing a Queue with an Array.
	Slide 47: Today, we will be implementing a Queue with an Array.
	Slide 48: Today, we will be implementing a Queue with an Array.
	Slide 49: Today, we will be implementing a Queue with an Array.
	Slide 50: Today, we will be implementing a Queue with an Array.
	Slide 51: Today, we will be implementing a Queue with an Array.
	Slide 52: Today, we will be implementing a Queue with an Array.
	Slide 53: Today, we will be implementing a Queue with an Array.
	Slide 54: Today, we will be implementing a Queue with an Array.
	Slide 55

