CSCI 132: Basic Data Structures and Algorithms

Recursion (Part 1)

Reese Pearsall & Iliana Castillon Fall 2024

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

Announcements

Lab 9 due tomorrow

Program 3 due Friday

Margot Lee Shetterly talk today @ 6pm

Program 4 posted, due ~two weeks from now (November 15)

Program 4

Recursion is a problem-solving technique that involves a <u>method</u> <u>calling itself</u> to solve some smaller problem

```
static int factorial(int n)
{
    if (n == 0)
        return 1;
    return n * factorial(n - 1);
```

TOP DEFINITION

recursion

See recursion.

by Anonymous December 05, 2002

It recurs.


```
static int factorial(int n)
{
    if (n == 0)
        return 1;
        return n * factorial(n - 1); (recursive case)
    }
```

factorial(5)

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)

The Fibonacci Sequence

1,1,2,3,5,8,13,21,34,55,89,144,233,377...

1+1=2	13+21=34
1+2=3	21+34=55
2+3=5	34+55=89
3+5=8	55+89=144
5+8=13	89+144=233
8+13=21	144+233=377

Because the solution to some problem can be expressed in terms of some smaller problem(s), recursion may be a good fit here

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

```
So, the N<sup>th</sup> digit of the Fibonacci Sequence = f(N-1) + f(N-2)
```


The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)

The Fibonacci Sequence

1,1,2,3,5,8,13,21,34,55,89,144,233,377...

1+1=2	13+21=34
1+2=3	21+34=55
2+3=5	34+55=89
3+5=8	55+89=144
5+8=13	89+144=233
8+13=21	144+233=37

Base Case?

If finding the 1st or 2nd digit, return 1

Recursive Case?

Calculate the previous two digits, f(n-1), f(n-2)

private static int fib(int n) { **if**(n == 1 || n == 2){ **return** 1; } else { return fib(n-1) + fib(n-2);

private static int fib(int n) { **if**(n == 1 || n == 2){ return 1; else { **return** *fib*(n-1) + *fib*(n-2);

Number of recursive calls = 8

Final answer!

private static int fib(int n) { **if**(n == 1 || n == 2){ return 1; } else { **return** *fib*(n-1) + *fib*(n-2);


```
private static int fib(int n) {
    if(n == 1 || n == 2) {
        return 1;
    }
    else {
        return fib(n-1) + fib(n-2);
    }
}
```

Running Time?


```
private static int fib(int n) {
    if(n == 1 || n == 2) {O(1)
        return 1;O(1)
    }
    else {      O(1) O(1)
        return fib(n-1) + fib(n-2);
    }
}
```

Running Time?

O(1) ?

Running Time?

O(1) ?

No!

When we are analyzing recursive algorithms, we have to calculate running time slightly different


```
private static int fib(int n) {
    if(n == 1 || n == 2) {
        return 1;
    }
    else {
        return fib(n-1) + fib(n-2);
    }
}
```

Generally speaking, we can compute the running time of a recursive algorithm by using the following formula:

Running time = # of recursive calls made * amount of work done in each call


```
private static int fib(int n) {
    if(n == 1 || n == 2) {O(1)
        return 1; O(1)
    }
    else {      O(1) O(1)
        return fib(n-1) + fib(n-2);
    }
}
```

Generally speaking, we can compute the running time of a recursive algorithm by using the following formula:

Running time = # of recursive calls made * amount of work done in each call

Running time = ??? * O(1)

If we were to plot the number of recursive calls made as n increases, it would look something like his:

Generally speaking, we can compute the running time of a recursive algorithm by using the following formula:

Running time = # of recursive calls made * amount of work done in each call

Running time = $O(2^n) * O(1)$

Total running time = $O(2^n)$ n = requested Fibonacci digit

 $O(2^n)$ is very bad...

(These lookups happen in constant time!)

Limitations of recursion?

