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Announcements

Lab 9 due tomorrow

Program 3 due Friday

Margot Lee Shetterly talk today @ 6pm

Program 4 posted, due ~two weeks from 

now (November 15)
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Program 4
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Recursion is a problem-solving 

technique that involves a method 

calling itself to solve some smaller 

problem

sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1);
}
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1);
}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)
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(base case)



sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

(base case)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

(base case)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

(base case)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

(base case)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

(base case)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

(base case)
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1 * factorial(0)
1 * 1



sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

(base case)

2 * factorial(1)
2 * 1 = 2

factorial(1)

1 * factorial(0)
1 * 1 = 1

factorial(0)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

(base case)

factorial(2)3* factorial(2) 

3 * 2 = 6
2 * factorial(1)
2 * 1 = 2

factorial(1)

1 * factorial(0)
1 * 1 = 1

factorial(0)
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sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

(base case)

factorial(2)3* factorial(2) 

3 * 2 = 6
2 * factorial(1)
2 * 1 = 2

factorial(1)

1 * factorial(0)
1 * 1 = 1

factorial(0)
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4* factorial(3) 

4 * 6 = 24



sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

(base case)

2 * 1 = 2
1 * factorial(0)
1 * 1 = 1

factorial(0)
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2 * factorial(1)

3* factorial(2) 

3 * 2 = 6

4* factorial(3) 

4 * 6 = 24

5* factorial(4) 

5 * 24 = 120



sta tic  int factorial(int n)
{

i f  (n == 0)
return 1;

We can solve the factorial for 

n by solving smaller 

problems ( factorial of n-1 ) !

factorial(3)

factorial(2)

factorial(1)

factorial(0)

Recursive solutions must have the two 

following conditions:

1. Base Case

2. Recursive Case

(base case)

1
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1

2

6
24

return n * factorial(n - 1); (recursive case)

}

120

factorial(5)

factorial(4)



The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)

Because the solution to some problem 

can be expressed in terms of some 

smaller problem(s), recursion may be a 

good fit here
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The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)
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Base Case?

Recursive Case?

Calculate



The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)

20

Base Case?

If finding the 1st or 2nd 

digit, return 1

Recursive Case?

Calculate the previous 

two digits, f(n-1), f(n-2)



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)
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private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

fib(4) fib(3)+

22



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)
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fib(4) fib(3)+

fib(3) fib(2)+ fib(2) + fib(1)

fib(2) fib(1)+

Number of recursive calls = 8



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

24

fib(4) fib(3)+

fib(3) 1+ 1 + 1

1 1+

Number of recursive calls = 8



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

25

fib(4) fib(3)+

2 1+ 1 + 1

Number of recursive calls = 8



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

3 2+
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Number of recursive calls = 8



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

5
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Number of recursive calls = 8

Final answer!



private stat ic  int fib(int n) {
i f (n  == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}
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Running Time?



return fib(n-1) + fib(n-2);
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}
}

private stat ic  int fib(int n) {
i f (n  == 1 || n == 2) { O(1)

return 1;O(1)

}
else { O(1)

Running Time?

O(1) O(1) ?



return fib(n-1) + fib(n-2);
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}
}

private stat ic  int fib(int n) {
i f (n  == 1 || n == 2) { O(1)

return 1;O(1)

}
else { O(1)

Running Time?

O(1) O(1) ?

No!

When we are analyzing recursive algorithms, we have to calculate running time slightly different



private s tat ic int fib(int n) {
i f (n  == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

31

Generally speaking, we can compute the running time of a recursive 

algorithm by using the following formula:

Running time = # of recursive calls made * amount of work done in each call



private s tat ic int fib(int n) {
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return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

Generally speaking, we can compute the running time of a recursive 

algorithm by using the following formula:

i f (n  == 1 || n == 2) { O(1)

Running time = # of recursive calls made * amount of work done in each call

O(1)

O(1) O(1)

Running time = ??? * O(1)



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)
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fib(4) fib(3)+

fib(3) fib(2)+ fib(2) + fib(1)

fib(2) fib(1)+

Number of recursive calls = 8



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(6)
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Number of recursive calls = 14

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(2) fib(1)



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1)
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private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

If we were to plot the number of recursive 

calls made as n increases, it would look 

something like his:

R
e

c
u
rs

iv
e

 C
a
lls

36

N (input to program)

Aka. O(2n)



return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

Generally speaking, we can compute the running time of a recursive 

algorithm by using the following formula:

private s tat ic int fib(int n) {
i f (n  == 1 || n == 2) { O(1)

Running time = # of recursive calls made * amount of work done in each call

O(1)

O(1) O(1)

Running time = O(2n) * O(1)

Total running time = O(2n)
n = requested Fibonacci digit

O(2n)
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O(2n) is very bad…



private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1) Any ideas for how to improve this algorithm?
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private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1) There is a lot of overlap…
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private sta tic  int  fib(int n) {
i f(n == 1 || n == 2) {

return  1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1)

fib(1) 1

fib(2) 1

fib(3) 3

fib(4) …

fib(5) …

40

Solution: Introduce a data structure to store 

Fibonacci digits in that we can reference later 

on (memoization)

(These lookups happen in constant time!)



Limitations of recursion?

41
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