y
CSCI 132:

Basic Data Structures and Algorithms

Recursion (Part 1)

Reese Pearsall & lliana Castillon
Fall 2024

’ https://www.cs.montana.edu/pearsall/classes/fall2024/132 /main.html *All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

Announcements

e

Lab 9 due tomorrow
Program 3 due Friday

Margot Lee Shetterly talk today @ 6pm

Program 4 posted, due ~two weeks from Spmetimes | can tell how

now (November 15) software works SImplyib
deciding how i think it works in
A mind and instantly believing

S MUVonmana

Program 4

MONTANA
STATE UNIVERSITY

TOP DEFINITION

o | recursion
Recursion is a problem-solving

technique that involves a method
calling itself to solve some smaller

problem (lb 916 | @I 42)

See recursion.

by Anonymous December 05, 2002

RECURSION

static int factorial(int n) ECTREION
{ ~ RECURSION
if (n==0) RECURSION
return 1; RECURSION

IIIII

return n * factorial(n - 1); RECURSION

It recurs

} RECURSION

It recurs.

RECURSION

It recurs.

S MMontana

static int factorial(int n) We can solve the factorial for
{ n by solving smaller

if (n==0) problems (factorial of n-1) !
return 1,

return n * factorial(n - 1);

.

factorial(4)

T

factorial(3)
factorial(2) T

factorial(1)

T

5

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

factorial(5)

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

factorial(5) —
factorial(4)

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

.

factorial(4)

)

factorial(3)

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

.

factorial(4)

TN

factorial(3)
factorial(2)

static int factorial(int n)

{
i1 (n==0) (base case)
return 1;
return n * factorial(n - 1); (recursive case)
}

. —

factorial(4)

N

factorial(3)
factorial(2) -

We can solve the factorial for
n by solving smaller
problems (factorial of n-1) !

factorial(1)

10

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

.

factorial(4)

TN

factorial(3)
factorial(2) —

factorial(1)

Y

11

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

. —

factorial(4)

T

factorial(3)
factorial(2) —

factorial(1) R

1 * factorial(0) factorial(0)
1*1

static int factorial(int n)

{
if (n==0)
return 1;

We can solve the factorial for
n by solving smaller

(base case) problems (factorial of n-1) !

return n * factorial(n - 1); (recursive case)

. —

factorial(4)

T

factorial(3)
factorial(2) [—

2 * factorial(1) [REGSHELEY Y
2*1=2

1 * factorial(0) factorial(0)
1*1=1

1

3

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

.

factorial(4)

)

factorial(3)
3* factorial(2) factorial(2)

—
* —_
372=6 2 * factorial(1) [UEECELEY Y
*1 =
2rl=e 1 * factorial(0) factorial(0)
1*1=1

1

4

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

. —

factorial(4)

T

4* factorial(3) factorial(3)
4*6=24
3* factorial(2) factorial(2)

—
* —_
372=6 2 * factorial(1) [REGSHELEY Y
*1 =
2rl=2 1 * factorial(0) factorial(0)
1*1=1

1

5

static int factorial(int n) We can s:olve the factorial for
{ n by solving smaller
if (n==0) problems (factorial of n-1) !

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

}
factorial(5) —
5* factorial(4) factorial(4)
5 * 24 = 120 _ —
4* factorial(3) factorial(3)
4%6=24 .
3* factorial(2) |kl —
3%2=6 2 * factorial(1) [ESELED N
* —
2%1=2 1 * factorial(0) factorial(0)
1*1=1

1

6

static int factorial(int n)

{
if (h==0)

(base case)
return 1;

return n * factorial(n - 1); (recursive case)

120

.

factorial(4)
2/4t 7 P

Recursive solutions must have the two [EECUELE)

following conditions: R factorial(2)

1. Base Case 2
2. Recursive Case

We can solve the factorial for
n by solving smaller
problems (factorial of n-1) !

N

n factorial(1)
1

T

/L factorial(0)
1

1

7

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nt digit of the Fibonacci Sequence = f(N-1) + f(N-2)

The Fibonacci Sequence
1,1,2,3,5,8,13,21,34,55,89,144,233,377....

1+1=2 13+21=34
1+2=3 21+34=55
2+3=5 34+55=89
3+5=8 55+89=144
5+8=13 89+144=233
8+13=21 144+233=377

Because the solution to some problem
can be expressed in terms of some
smaller problem(s), recursion may be a
good fit here

18

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nt digit of the Fibonacci Sequence = f(N-1) + f(N-2)

The Fibonacci Sequence

1,1,2,3,5,8,13,21,34,55,89,144,233,377 ...

1+1=2
1+2=3
2+3=5
3+5=8
5+8=13
8+13=21

13+21=34
21+34=55
34+55=89
55+89=144
89+144=233
144+233=377

Base Case?

Recursive Case?

Calculate

19

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nt digit of the Fibonacci Sequence = f(N-1) + f(N-2)

The Fibonacci Sequence
1,1,2,3,5,8,13,21,34,55,89,144,233,377....

1+1=2
1+2=3
2+3=5
3+5=8
5+8=13
8+13=21

13+21=34
21+34=55
34+55=89
55+89=144
89+144=233
144+233=377

Base Case?

If finding the 1st or 2nd
digit, return 1

Recursive Case?

Calculate the previous
two digits, f(n-1), f(n-2)

20

private static int fib(int n){
if(n==1]]n==2){

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

MONTANA

STATE UNIVERSITY

private static int fib(int n){
if(n==1]]n==2){

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

MONTANA
STATE UNIVERSITY

private static int fib(int n){
if(ln==1]|n==2){
return 1,

Number of recursive calls = 8

fib(5) |

return fib(n-1) + fib(n-2);
}

}

fib(4) + fib(3)

fib(2) fib(2) ESK fib(1)

OO

M MONTANA

STATE UNIVERSITY

Number of recursive calls = 8

fib(4)

+

N

+

private static int fib(int n){
if(ln==1]|n==2){

return 1,
}
else {
return fib(n-1) + fib(n-2);
}
}

MONTANA

STATE UNIVERSITY

private static int fib(int n){

Number of recursive calls = 8 ifino=1]]no=2)(

return 1,
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(4)

+

MONTANA
STATE UNIVERSITY

private static int fib(int n){
if(n==1]]n==2){

Number of recursive calls = 8

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

MONTANA
STATE UNIVERSITY

private static int fib(int n){
if(n==1]]n==2){
return 1;

Number of recursive calls = 8

Final answer! |

else {

return fib(n-1) + fib(n-2);
}
}

MONTANA

STATE UNIVERSITY

private static int fib(int n){

if(n==1]|n==2){ Running Time?
return 1;

}

else {

return fib(n-1)+ fib(n-2);
}
}

MONTANA
STATE UNIVERSITY

private static int fib(int n){ : :
if(n==11| n==2){0(1) Running Time?

return 1;0(1)

}

else { o o O(1) ?
return fib(n-1)+ fib(n-2);

}

}

MONTANA
STATE UNIVERSITY

private static int fib(int n){
if(n==1]] n==2){0(1)
return 1;0(1)

Running Time?

}

else { O(1) o(1) QGH—'Z

return fib(n-1)+ fib(n-2);
} } No!

When we are analyzing recursive algorithms, we have to calculate running time slightly different

T M voymana

}

private static int fib(int n){

if(hn==1]| n==2){

return 1,
}
else {

return fib(n-1)+ fib(n-2);
}

Generally speaking, we can compute the running time of a recursive
algorithm by using the following formula:

*

Running time = # of recursive calls made amount of work done in each call

private static int fib(int n){
if(n==1]] n==2){0(1)
return 1, O(l)

}

else { O(1) O(1)
return fib(n-1)+ fib(n-2);

}

}

Generally speaking, we can compute the running time of a recursive
algorithm by using the following formula:

*

Running time = # of recursive calls made amount of work done in each call

Runningtime = ?7?7? * O(1)

T M vowrana

private static int fib(int n){
if(ln==1]|n==2){
return 1,

Number of recursive calls = 8

fib(5) |

return fib(n-1) + fib(n-2);
}

}

fib(4) + fib(3)

fib(2) fib(2) ESK fib(1)

OO

M MONTANA

STATE UNIVERSITY

Number of recursive calls = 14 Priyove siatic Tt fblint i
if(n==1|]| n==2){
return 1;
else {
return fib(n-1) + fib(n-2);

Number of recursive calls = 24

fib(4)

fib(3) fib(2)

fib(2) fib(1)

private static int fib(int n){
if(ln==1]|n==2){
return 1;
}
else {
return fib(n-1) + fib(n-2);
}
}

fib(2) fib(1)

If we were to plot the number of recursive return fib(n-1) + fib(n-2)
calls made as n increases, it would look

something like his:

Recursive Calls

private static int fib(int n){
if(ln==1||n==2){
return 1;

}

else {

}
}

N (input to program)

36

Pr:}’(a nte== 51t|a|t|:C==1 n)t{o?lt;(mt Vi @®® b(Z“)
} return 1; o(1) @ O OO
else { O(1) O(1) @ @® @@@ OO
return fib(n-1)+ fib(n-2); OO OO OO
. ODOD

Generally speaking, we can compute the running time of a recursive
algorithm by using the following formula:

*

Running time = # of recursive calls made amount of work done in each call

Runningtime = O(2") * O(1)

Total running time = O(2")

n = requested Fibonacci digit O(2) isvery bad...

T M vovrana

Number of recursive calls = 24

fib(4)

fib(3) fib(2)

fib(2) fib(1)

private static int fib(int n){
if(ln==1]|n==2){
return 1;
}
else {
return fib(n-1) + fib(n-2);
}
}

fib(2) fib(1)

Number of recursive calls = 24 private static Int fib(int n){

if(ln==1]|n==2){
return 1;

}

else {

}
}

return fib(n-1) + fib(n-2);

fib(4)

fib(3) fib(2) fib(2)

fib2) Y fib(1) @

There is a lot of overlap...

fib(1)

39

Number of recursive calls = 24 Priyove siatic Tt fblint i
if(n=1]|n==2

return 1;

}

else {

fib(1) |1
fib(2) |1
fib(3) |3

return fib(n-1) + fib(n-2);
}
}

fib(4)
fib(5)

fib(2) fib(2) fib(1)

fib(1) @

Solution: Introduce a data structure to store
Fibonacci digits in that we can reference later
on (memoization)

(These lookups happen in constant time!)

40

Limitations of recursion?

MONTANA
STATE UNIVERSITY

	Slide 1: CSCI 132:
	Slide 2: Announcements
	Slide 3: Program 4
	Slide 4: Recursion is a problem-solving technique that involves a method calling itself to solve some smaller problem
	Slide 5: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 6: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 7: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 8: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 9: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 10: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 11: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 12: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 13: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 14: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 15: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 16: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 17: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 18: The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones
	Slide 19: The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones
	Slide 20: So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)
	Slide 21: fib(5)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Number of recursive calls = 8
	Slide 28: Running Time?
	Slide 29: Running Time?
	Slide 30: Running Time?
	Slide 31
	Slide 32: if(n == 1 || n == 2) { O(1)
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: O(2n)
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Limitations of recursion?

