
CSCI 132:
Basic Data Structures and Algorithms

Recursion (Part 1)

Reese Pearsall & Iliana Castillon

Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2023/132/main.html

Announcements

Lab 9 due tomorrow

Program 3 due Friday

Margot Lee Shetterly talk today @ 6pm

Program 4 posted, due ~two weeks from

now (November 15)

2

Program 4

3

Recursion is a problem-solving

technique that involves a method

calling itself to solve some smaller

problem

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1);
}

4

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1);
}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

5

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

6

(base case)

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

(base case)

7

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

(base case)

8

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

(base case)

9

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

(base case)

10

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

(base case)

11

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

factorial(0)

(base case)

12

1 * factorial(0)
1 * 1

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

(base case)

2 * factorial(1)
2 * 1 = 2

factorial(1)

1 * factorial(0)
1 * 1 = 1

factorial(0)

13

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

(base case)

factorial(2)3* factorial(2)

3 * 2 = 6
2 * factorial(1)
2 * 1 = 2

factorial(1)

1 * factorial(0)
1 * 1 = 1

factorial(0)

14

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

(base case)

factorial(2)3* factorial(2)

3 * 2 = 6
2 * factorial(1)
2 * 1 = 2

factorial(1)

1 * factorial(0)
1 * 1 = 1

factorial(0)

15

4* factorial(3)

4 * 6 = 24

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

return n * factorial(n - 1); (recursive case)

}

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(5)

factorial(4)

factorial(3)

factorial(2)

factorial(1)

(base case)

2 * 1 = 2
1 * factorial(0)
1 * 1 = 1

factorial(0)

16

2 * factorial(1)

3* factorial(2)

3 * 2 = 6

4* factorial(3)

4 * 6 = 24

5* factorial(4)

5 * 24 = 120

sta tic int factorial(int n)
{

i f (n == 0)
return 1;

We can solve the factorial for

n by solving smaller

problems (factorial of n-1) !

factorial(3)

factorial(2)

factorial(1)

factorial(0)

Recursive solutions must have the two

following conditions:

1. Base Case

2. Recursive Case

(base case)

1

17

1

2

6
24

return n * factorial(n - 1); (recursive case)

}

120

factorial(5)

factorial(4)

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)

Because the solution to some problem

can be expressed in terms of some

smaller problem(s), recursion may be a

good fit here

18

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)

19

Base Case?

Recursive Case?

Calculate

The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones

So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)

20

Base Case?

If finding the 1st or 2nd

digit, return 1

Recursive Case?

Calculate the previous

two digits, f(n-1), f(n-2)

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

21

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

fib(4) fib(3)+

22

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

23

fib(4) fib(3)+

fib(3) fib(2)+ fib(2) + fib(1)

fib(2) fib(1)+

Number of recursive calls = 8

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

24

fib(4) fib(3)+

fib(3) 1+ 1 + 1

1 1+

Number of recursive calls = 8

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

25

fib(4) fib(3)+

2 1+ 1 + 1

Number of recursive calls = 8

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

3 2+

26

Number of recursive calls = 8

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

5

27

Number of recursive calls = 8

Final answer!

private stat ic int fib(int n) {
i f (n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

28

Running Time?

return fib(n-1) + fib(n-2);

29

}
}

private stat ic int fib(int n) {
i f (n == 1 || n == 2) { O(1)

return 1;O(1)

}
else { O(1)

Running Time?

O(1) O(1) ?

return fib(n-1) + fib(n-2);

30

}
}

private stat ic int fib(int n) {
i f (n == 1 || n == 2) { O(1)

return 1;O(1)

}
else { O(1)

Running Time?

O(1) O(1) ?

No!

When we are analyzing recursive algorithms, we have to calculate running time slightly different

private s tat ic int fib(int n) {
i f (n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

31

Generally speaking, we can compute the running time of a recursive

algorithm by using the following formula:

Running time = # of recursive calls made * amount of work done in each call

private s tat ic int fib(int n) {

32

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

Generally speaking, we can compute the running time of a recursive

algorithm by using the following formula:

i f (n == 1 || n == 2) { O(1)

Running time = # of recursive calls made * amount of work done in each call

O(1)

O(1) O(1)

Running time = ??? * O(1)

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(5)

33

fib(4) fib(3)+

fib(3) fib(2)+ fib(2) + fib(1)

fib(2) fib(1)+

Number of recursive calls = 8

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(6)

34

Number of recursive calls = 14

fib(5) fib(4)

fib(4) fib(3) fib(3) fib(2)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)

fib(2) fib(1)

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1)

35

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

If we were to plot the number of recursive

calls made as n increases, it would look

something like his:

R
e

c
u
rs

iv
e

 C
a
lls

36

N (input to program)

Aka. O(2n)

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

Generally speaking, we can compute the running time of a recursive

algorithm by using the following formula:

private s tat ic int fib(int n) {
i f (n == 1 || n == 2) { O(1)

Running time = # of recursive calls made * amount of work done in each call

O(1)

O(1) O(1)

Running time = O(2n) * O(1)

Total running time = O(2n)
n = requested Fibonacci digit

O(2n)

37

O(2n) is very bad…

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1) Any ideas for how to improve this algorithm?

38

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1) There is a lot of overlap…

39

private sta tic int fib(int n) {
i f(n == 1 || n == 2) {

return 1;
}
else {

return fib(n-1) + fib(n-2);
}

}

fib(7)

Number of recursive calls = 24

fib(6) fib(5)

fib(5) fib(4) fib(4) fib(3)

fib(4) fib(3) fib(3) fib(2) fib(3) fib(2) fib(2) fib(1)

fib(3) fib(2)

fib(2) fib(1)

fib(2) fib(1)
fib(2) fib(1)

fib(2) fib(1)

fib(1) 1

fib(2) 1

fib(3) 3

fib(4) …

fib(5) …

40

Solution: Introduce a data structure to store

Fibonacci digits in that we can reference later

on (memoization)

(These lookups happen in constant time!)

Limitations of recursion?

41

	Slide 1: CSCI 132:
	Slide 2: Announcements
	Slide 3: Program 4
	Slide 4: Recursion is a problem-solving technique that involves a method calling itself to solve some smaller problem
	Slide 5: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 6: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 7: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 8: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 9: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 10: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 11: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 12: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 13: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 14: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 15: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 16: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 17: We can solve the factorial for n by solving smaller problems (factorial of n-1) !
	Slide 18: The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones
	Slide 19: The Fibonacci sequence is a sequence in which each number is the sum of the two preceding ones
	Slide 20: So, the Nth digit of the Fibonacci Sequence = f(N-1) + f(N-2)
	Slide 21: fib(5)
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Number of recursive calls = 8
	Slide 28: Running Time?
	Slide 29: Running Time?
	Slide 30: Running Time?
	Slide 31
	Slide 32: if(n == 1 || n == 2) { O(1)
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37: O(2n)
	Slide 38
	Slide 39
	Slide 40
	Slide 41: Limitations of recursion?

