
CSCI 132:
Basic Data Structures and Algorithms

Recursion (Part 3)

Reese Pearsall & Illiana Castillon
Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

2

Announcements

Lab 10 due tomorrow

Lowest Lab Grade gets

dropped at the end of

the semester

3

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

4

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

5

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

6

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

Algorithm?

7

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

Use as many quarters as possible, then as many dimes as possible, …

8

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Answer = 4

(Quarter, dime, two pennies)

Use as many quarters as possible, then as many dimes as possible, …

This is known as the greedy approach

9

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 25]

K = 37

Use as many quarters as possible, then as many

dimes as possible, …

Greedy Algorithm

10

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

Greedy Algorithm

What if there were also an 18-cent coin?

11

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1 (4 coins)

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

12

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1

Real Answer = 18, 18, 1 (3 coins)

(4 coins)

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

13

Change Making Problem

Given a set a coin denominations D, how can you represent K cents with the

smallest number of coins?

D = [1, 5, 10, 18, 25]

K = 37

Greedy Algorithm

What if there were also an 18-cent coin?

25, 10, 1, 1

Real Answer = 18, 18, 1 (3 coins)

(4 coins)

Use as many quarters as possible, then as many 18

cent pieces as possible, then dimes , …

Lesson Learned: The Greedy approach works for the United States

denominations, but not for a general set of denominations

14

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

What can you conclude?

Does this provide an answer to any other change making problems?

15

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 38 cents

16

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 13 cents

17

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 3 cents

18

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 2 cents

19

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

This is the minimum coins needed to make 1 cent

20

Change Making Problem

Suppose I tell you that 2 quarters, 1 dime, and 3 pennies are

the minimum number of coins needed to make 63 cents

25 + 25 + 10 + 1 + 1 + 1 = 63

(We will assume we have the standard US denominations [1, 5, 10, 25] (NO 50 CENT PIECE)

The solution to the change making problems consists of solutions to

smaller change making problems

We can use recursion to solve this problem

21

Change Making Problem

22

Change Making Problem

23

Change Making Problem

C(37) = 1 + C(12)

We used one quarter
Now find the minimum number

of coins needed to make 12

cents

24

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

We used one dime

Now find the

minimum number

of coins needed to

make 2 cents

25

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 1 + C(1)

C(1) = 1 + C(0)

26

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 1 + C(1)

C(1) = 1

27

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 1 + 1

28

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + C(2)

C(2) = 2

29

Change Making Problem

C(37) = 1 + C(12)

C(12) = 1 + 2

30

Change Making Problem

C(37) = 1 + C(12)

C(12) = 3

31

Change Making Problem

C(37) = 1 + 3

32

Change Making Problem

C(37) = 4

The minimum number of coins needed to make 37 cents is 4

33

Change Making Problem

(This algorithm must work for ALL denominations)

34

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19

35

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

36

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum

coins needed

to make 18

cents

Find minimum

coins needed

to make 14

cents

Find minimum

coins needed

to make 9

cents

k = # denominations

To find the minimum number of coins needed to create 19 cents,

we generate k subproblems

37

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

Find minimum

coins needed

to make 18

cents

Find minimum

coins needed

to make 14

cents

Find minimum

coins needed

to make 9

cents

k = # denominations

We want to select the minimum solution of these three subproblems

38

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.09

19
1

5

18 14 10

Find minimum

coins needed

to make 18

cents

Find minimum

coins needed

to make 14

cents

Find minimum

coins needed

to make 10

cents

k = # denominations

5 5 2

For the solution of our original problem (19), we want to select this branch (one nine cent used)

9

39

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

Find minimum

coins needed

to make 17

cents

Find minimum

coins needed

to make 13

cents

Find minimum

coins needed

to make 8

cents

40

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

13 9 4

Find minimum

coins needed

to make 13

cents

Find minimum

coins needed

to make 9

cents

Find minimum

coins needed

to make 4

cents

41

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

42

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

43

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

Eventually, we reach our base case, the minimum number of coins needed to make 0 cents0

44

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7
For each change making problem we solve, we must solve at most 3

smaller change making problems

Once we solve the smaller problems, we must select the branch that

has the minimum value

13 9 8

1
5

10 1
5

8 4

When C(9), we cant

use a 10 cent piece…

45

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7
For each change making problem we solve, we must solve at most 3

smaller change making problems

Once we solve the smaller problems, we must select the branch that

has the minimum value

13 9 8

1
5

10 1
5

8 4

When C(9), we cant

use a 10 cent piece…

46

47

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

48

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

We want to select only the branch the yields the minimum value

49

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

We want to select only the branch the yields the minimum value

If we ever need to

make change for 0

cents, return 0

50

Change Making Problem

For each problem P, we will solve the

problem for (P – d), where d represents

each possible denomination

We want to select only the branch the yields the minimum value

If we ever need to

make change for 0

cents, return 0

51

Change Making Problem

min_coins(D, p)

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

52

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

53

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

54

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

55

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

Select the branch that has

the minimum value

56

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

Select the branch that has

the minimum value

57

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

return 1 + min

D = array of denominations [1, 5, 10, 18, 25]

p = desired change (37)

Base Case

Recurse, and find the

minimum number of coins

needed using each valid

denomination

Select the branch that has

the minimum value

Once, our for loop finishes, we should know the branch that

had the minimum, so return (1 + min), 1 because one coin

was used in the current method call

58

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

return 1 + min

59

Change Making Problem

min_coins(D, p)

if p == 0

return 0;

else

min = ∞
a = ∞

for each di in D

if (p – di) >= 0

a = min_coins(D, p – di)

if a < min

min = a

return 1 + min

Running time?

60

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

For sufficiently large p,

every permutation of

denominations is

included.

61

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

62

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

63

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

64

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

65

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls
being made will grow exponentially

If we have a lot of coin denominations, we will
have a lot of branching

66

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls
being made will grow exponentially

Running time: O()

67

Change Making Problem

Make $0.19 with $0.01, $0.05, $0.10

19
1

5
10

18 14 9

k = # denominations

1
5

10

17 13 8

1
5

10

16 12 7

13 9 8

1
5

10 1
5

8 4

p = value to make change for

k

k2

k3

kp

As k and p both grow, the number of recursive calls
being made will grow exponentially

Branching Factor: O(K)
Running time: O(kp)

For a large set of denominations, or a large p, this
algorithm will take a long time to run

68

Change Making Problem

Combinations for 7 cents

Using D = [1, 5, 10]

[1, 1, 5]

[1, 1, 1, 1, 1, 1, 1]

[1, 1, 5] and [5, 1, 1] is the

same combination…

Permutations for 7 cents

Using D = [1, 5, 10]

[1, 1, 5]

[5, 1, 1]

[1, 5, 1]

…

[1, 1, 1, 1, 1, 1, 1]

Order does not matter.

[1, 1, 5] and [5, 1, 1] are

considered different solutions

In our change making algorithm, we are calculating every possible permutation (bad)

69

Let’s try 81 cents!

70

Change Making Problem

This algorithm returns the minimum number of

coins needed (ie 4), but it does not tell us what

coins were used in that solution

71

Change Making Problem

This algorithm returns the minimum number of

coins needed (ie 4), but it does not tell us what

coins were used in that solution

D = Array of coin denominations [1, 5, 10, 25]

p = value to make change for

n = minimum number of coins used to make p cents

Goal: Find an n-length combination of coins from D that were used to make p

72

Change Making Problem

This algorithm returns the minimum number of

coins needed (ie 4), but it does not tell us what

coins were used in that solution

D = Array of coin denominations [1, 5, 10, 25]

p = value to make change for

n = minimum number of coins used to make p cents

Goal: Find an n-length combination of coins from D that were used to make p

To do this, we will compute all n-length combinations, but only return the

combinations that add up to be p (not very efficient)

73

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

For n=3, these are the combinations to be generated:

• [1, 1, 1]

• [1, 1, 5]

• [1, 1, 10]

• [1, 5, 5]

• [1, 5, 10]

• [1, 10, 10]

• [5, 5, 5]

• [5, 5, 10]

• [5, 10, 10]

• [10, 10, 10]

Note:

[5, 1, 1] is not a “valid”

combination, because it is the

same thing as [1, 1, 5]

74

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

75

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]

76

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

This branch does not get 1 included in

the denomination set, because all the

combinations involving 1 will be handled

by the left tree

77

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

78

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

[1, 1, 1,] [1, 1, 5,] [1, 1, 10,]

(Base case) When are combinations reach a

length of 3, we will stop recursing

[1, 1, 1] [1, 1, 5] [1, 1, 10]

79

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

[1, 1, 1] [1, 1, 5] [1, 1, 10]

80

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

[1, 1, 1] [1, 1, 5] [1, 1, 10]

[1, 5, 5] [1, 5, 10,]

81

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10]

[1, 5, 5] [1, 5, 10,]

82

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10]

[1, 10, 10]

83

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10]

[1, 10, 10]

84

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10]

[5, 5, __,] [5, 10, __,]

85

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10]

[5, 5, __,] [5, 10, __,]

[5, 5, 5,] [5, 5, 10,]

86

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10] [5, 5, 5] [5, 5, 10]

[5, 5, __,] [5, 10, __,]

[5, 5, 5,] [5, 5, 10,]

87

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10] [5, 5, 5] [5, 5, 10]

[5, 5, __,] [5, 10, __,]

[5, 10, 10,]

88

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10] [5, 5, 5] [5, 5, 10] [5, 10, 10]

[5, 5, __,] [5, 10, __,]

[5, 10, 10,]

89

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10] [5, 5, 5] [5, 5, 10] [5, 10, 10]

[10, 10, __,]

90

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10] [5, 5, 5] [5, 5, 10] [5, 10, 10]

[10, 10, __,]

[10, 10, 10,]

91

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

[__, __, __,]

n = 3

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

[1, 1, 1] [1, 1, 5] [1, 1, 10] [1, 5, 5] [1, 5, 10] [1, 10, 10] [5, 5, 5] [5, 5, 10] [5, 10, 10] [10, 10, 10]

[10, 10, __,]

[10, 10, 10,]

92

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

n = 3

1. [1, 1, 1]

2. [1, 1, 5]

3. [1, 1, 10]

4. [1, 5, 5]

5. [1, 5, 10]

6. [1, 10, 10]

7. [5, 5, 5]

8. [5, 5, 10]

9. [5, 10, 10]

10.[10, 10, 10]

We’ve generated all combinations of length 3

93

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

n = 3

1. [1, 1, 1]

2. [1, 1, 5]

3. [1, 1, 10]

4. [1, 5, 5]

5. [1, 5, 10]

6. [1, 10, 10]

7. [5, 5, 5]

8. [5, 5, 10]

9. [5, 10, 10]

10.[10, 10, 10]

We’ve generated all combinations of length 3

Now, we only want to print out the combinations that add up to K

94

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

n = 3

K = 16

1. [1, 1, 1]

2. [1, 1, 5]

3. [1, 1, 10]

4. [1, 5, 5]

5. [1, 5, 10]

6. [1, 10, 10]

7. [5, 5, 5]

8. [5, 5, 10]

9. [5, 10, 10]

10.[10, 10, 10]

We’ve generated all combinations of length 3

Now, we only want to print out the combinations that add up to K

Suppose K = 16 (a minimum of 3 coins is needed to make 16 cents)

95

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

n = 3

K = 16

1. [1, 1, 1]

2. [1, 1, 5]

3. [1, 1, 10]

4. [1, 5, 5]

5. [1, 5, 10]

6. [1, 10, 10]

7. [5, 5, 5]

8. [5, 5, 10]

9. [5, 10, 10]

10.[10, 10, 10]

We’ve generated all combinations of length 3

Now, we only want to print out the combinations that add up to K

Suppose K = 16 (a minimum of 3 coins is needed to make 16 cents)

Answer = [1, 5, 10]

96

Generating Combinations for finding coins Denominations (D) = [1, 5, 10]

n = 3

K = 16

1. [1, 1, 1]

2. [1, 1, 5]

3. [1, 1, 10]

4. [1, 5, 5]

5. [1, 5, 10]

6. [1, 10, 10]

7. [5, 5, 5]

8. [5, 5, 10]

9. [5, 10, 10]

10.[10, 10, 10]

We’ve generated all combinations of length 3

Now, we only want to print out the combinations that add up to K

Suppose K = 16 (a minimum of 3 coins is needed to make 16 cents)

Answer = [1, 5, 10]

LET’S CODE THIS!!

If you don’t fully understand this code, that is fine.

97

private static void find_coins(int[] d, int k, int n) {
int chosen[] = new int[n + 1];
calculate_combinations(chosen, d, 0, n, 0, d.length - 1, k);

}

void calculate_combinations(int[] chosen, int[] arr, int index, int r, int start, int end, int target) {

Array that we build up over time. Holds indices of currently selected denominations for some combination

[1,__, __]

[1,1, __]

[1,1, 5]

98

private static void find_coins(int[] d, int k, int n) {
int chosen[] = new int[n + 1];
calculate_combinations(chosen, d, 0, n, 0, d.length - 1, k);

}

void calculate_combinations(int[] chosen, int[] arr, int index, int r, int start, int end, int target) {

Array of denominations we pass for each recursive call

[__, __, __,]

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10] D = [10]

99

private static void find_coins(int[] d, int k, int n) {
int chosen[] = new int[n + 1];
calculate_combinations(chosen, d, 0, n, 0, d.length - 1, k);

}

void calculate_combinations(int[] chosen, int[] arr, int index, int r, int start, int end, int target) {

The next index that we need to insert at for chosen array

[1,__, __] [1,1, __] [1,1, 5] [__,__, __]

index index index

100

private static void find_coins(int[] d, int k, int n) {
int chosen[] = new int[n + 1];
calculate_combinations(chosen, d, 0, n, 0, d.length - 1, k);

}

void calculate_combinations(int[] chosen, int[] arr, int index, int r, int start, int end, int target) {

The desired size of the combination. When index == r, we have reached the desired combination size

[1,__, __] [1,1, __] [__,__, __]

index = 0 index = 1 index = 2

[1,1, 5]

index = 3

We’ve hit our

desired size!

101

void calculate_combinations(int[] chosen, int[] arr, int index, int r, int start, int end, int target) {

if (index == r) {
int counter = 0;
ArrayList<Integer> coins = new ArrayList<Integer>();
for (int i = 0; i < r; i++) {

counter += arr[chosen[i]];
coins.add(arr[chosen[i]]);

}
if(counter == target) {

System.out.println(coins);
}
return;

}
for (int i = start; i <= end; i++) {

chosen[index] = i;
calculate_combinations(chosen, arr, index + 1, r, i, end, target);

}
return;

}

102

void calculate_combinations(int[] chosen, int[] arr, int index, int r, int start, int end, int target) {

if (index == r) {
int counter = 0;
ArrayList<Integer> coins = new ArrayList<Integer>();
for (int i = 0; i < r; i++) {

counter += arr[chosen[i]];
coins.add(arr[chosen[i]]);

}
if(counter == target) {

System.out.println(coins);
}
return;

}
for (int i = start; i <= end; i++) {

chosen[index] = i;
calculate_combinations(chosen, arr, index + 1, r, i, end, target);

}
return;

}

Only print out the combination if it
adds up to target

If we hit our base

case, we know we

have N things, so

put them in an

ArrayList and add
them up

103

void calculate_combinations(int[] chosen, int[] arr, int index, int r, int start, int end, int target) {

if (index == r) {
int counter = 0;
ArrayList<Integer> coins = new ArrayList<Integer>();
for (int i = 0; i < r; i++) {

counter += arr[chosen[i]];
coins.add(arr[chosen[i]]);

}
if(counter == target) {

System.out.println(coins);
}
return;

}
for (int i = start; i <= end; i++) {

chosen[index] = i;
calculate_combinations(chosen, arr, index + 1, r, i, end, target);

}
return;

}
Otherwise, insert selected coin into the chosen array

create (end-start) branches, and give it a smaller section of D

104

[__, __, __,]

[1, __, __,] [5, __, __,] [10, __, __,]
D = [1, 5, 10] D = [5, 10]

[1, 1, __,] [1, 5, __,] [1, 10, __,]

[1, 1, 1,] [1, 1, 5,] [1, 1, 10,]

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104

