
CSCI 132:
Basic Data Structures and Algorithms

Searching (Binary Search)

Reese Pearsall & Iliana Castillon

Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

Announcements

Lab 12 posted

→ You can reference a lot of the code

from today

2

(jk, send a message on discord)

Searching

We store values in data structures, but we also need to retrieve/search for values!

Today, we will discuss techniques for how to search for a value in a data structure

(We will be using arrays, but these techniques could also be

used on Linked Lists, queues, stacks, etc)

3

Searching

Option 1: Linear Search

Check every spot until one by one until we find what we are looking for

if(array[i] == s) {
return i;

4

public int linear_search(int[] array, int s) {
for(int i = 0; i < array.length; i++) {

}
}
return -1;

}

Searching

Option 1: Linear Search

Check every spot until one by one until we find what we are looking for

Not efficient for large data structures. O(n) running time

if(array[i] == s) {
return i;

5

public int linear_search(int[] array, int s) {
for(int i = 0; i < array.length; i++) {

}
}
return -1;

}

6

Searching

Option 1: Linear Search

Check every spot until one by one until we find what we are looking for

Not efficient for large data structures. O(n) running time

public int linear_search(int[] array, int s) {
for(int i = 0; i < array.length; i++) {

}
}
return -1;

}

Can we do better?

1 2 9 10 11 15 18 21 27 31 41 43 50

7

0 12

What if our array is sorted?

1 2 9 10 11 15 18 21 27 31 41 43 50

8

0 12

Target Value: 27

We can leverage the fact that this array is sorted to make

searching more efficient

1 2 9 10 11 15 18 21 27 31 41 43 50

9

0 12

Target Value: 27

1. Start at the middle of the array

1 2 9 10 11 15 18 21 27 31 41 43 50

10

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array

→ If the target value is less than the middle, discard the “right

section” of the array

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array

→ If the target value is less than the middle, discard the “right

section” of the array

low

We will define two pointers, low and high that point to the possible bounds of the target value

11

high

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array

→ If the target value is less than the middle, discard the “right

section” of the array

low

We will define two pointers, low and high that point to the possible bounds of the target value

12

high

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

Because we know the array is sorted, and the target value is greater than our mid point, then we
know the target value must be located somewhere to the right.

We can eliminate half of the array!!!

low

13

high

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low

14

high

7

42

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7

43

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7

44

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7 8

45

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7 8

46

1 2 9 10 11 15 18 21 27 31 41 43 50

0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7 8

47

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7 8

48

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7 8

49

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

7 8

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

23

7 8

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

low high

24

7 8

This algorithm is known as Binary Search

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

How to calculate the mid point?

low high

7 8

25

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

How to calculate the mid point? (low + high) / 2

low high

7 8

26

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

How do we know when to stop looping?

low high

7 8

27

1 2 9 10 11 15 18 21 27 31 41 43 50
0 12

Target Value: 27

1. Start at the middle of the array

2. Compare to target value:

→ If the value is the target value, return

→ If the target value is greater than the middle, discard the “left

section” of the array (move the low pointer)

→ If the target value is less than the middle, discard the “right

section” of the array (move the high pointer)

3. Recalculate the mid point, and repeat loop back to step 2 until

target value is found

How do we know when to stop looping?
If we find the target value, or if low and

high cross each other (low > high)

low high

7 8

28

0 12

2 9 10 11 15 18 21 27 31 41

low high

art at the middle of the array

ompare to target value:

the value is the target value, return

the target value is greater than the middle, discard the “left

on” of the array (move the low pointer)

the target value is less than the middle, discard the “right

on” of the array (move the high pointer)

alculate the mid point, and repeat loop back to step 2 until

Target Value: 27

7 8

1. S

2. C

→ If

→ If

secti

→ If

secti

3. Re

target value is found

How do we know when to stop looping?
If we find the target value, or if low and

high cross each other (low > high)

1 43 50

t

LET’S CODE THIS

c

29

private s tat ic int binary_search(int[] array, int n) {
int low = 0;
int high = array.length - 1;
while(low <= high) {

int mid = (low + high) / 2;
i f (n == array[mid]) {

return mid;
}
else i f (n > array[mid]) {

low = mid + 1;
}
else {

high = mid - 1;
}

}
return -1;

}

30

Running time?

private s tat ic int binary_search(int[] array, int n) {
int low = 0;
int high = array.length - 1;
while(low <= high) {

int mid = (low + high) / 2;
i f (n == array[mid]) {

return mid;
}
else i f (n > array[mid]) {

low = mid + 1;
}
else {

high = mid - 1;
}

}
return -1;

}

31

Running time? Each time we loop, we eliminate half the array

Running time?

32

Running time?

33

Running time?

34

Running time?

After k iterations, eventually our array has been reduced to one element

“Two to what power makes n??”

35

Running time?

After k iterations, eventually our array has been reduced to one element

“Two to what power makes n??”

36

Running time?

After k iterations, eventually our array has been reduced to one element

“Two to what power makes n??”

37

Running time?

After k iterations, eventually our array has been reduced to one element

“Two to what power makes n??”

After K iterations, we will have done log(n) divisions

38

private s tat ic int binary_search(int[] array, int n) {
int low = 0;
int high = array.length - 1;
while(low <= high) {

int mid = (low + high) / 2;
i f (n == array[mid]) {

return mid;
}
else i f (n > array[mid]) {

low = mid + 1;
}
else {

high = mid - 1;
}

}
return -1;

}

Running time? Generally speaking, whenever we eliminate half of the problem

each iteration, that will give us O(logn) running time

39

private s tat ic int binary_search(int[] array, int n) {
int low = 0; O(1)

Running time? Generally speaking, whenever we eliminate half of the problem

each iteration, that will give us O(logn) running time

40

O(1)int mid = (low + high) / 2;
i f (n == array[mid]) { O(1)

return mid; O(1)

}
else i f (n > array[mid]) { O(1)

low = mid + 1; O(1)

}
else {

high = mid - 1; O(1)

}
}
return -1; O(1)

}

int high = array.length - 1; O(1)
while(low <= high) { O(log n)

Running time?

41

int mid = (low + high) / 2;
i f (n == array[mid]) { O(1)

return mid; O(1)

}
else i f (n > array[mid]) { O(1)

low = mid + 1; O(1)

}
else {

high = mid - 1; O(1)

}
}
return -1; O(1)

}

private s tat ic int binary_search(int[] array, int n) {
int low = 0; O(1)

int high = array.length - 1; O(1)
while(low <= high) { O(log n)

O(log n)

O(1)

Why O(log n) ?

1 2 9 10 11 15 18 21 27 31 41 43 50

low high

1 2 9 10 11 15 18 21 27 31 41 43 50

low high

1 2 9 10 11 15 18 21 27 31 41 43 50

low high

1 2 9 10 11 15 18 21 27 31 41 43 50

highlow

42

Why O(log n) ?

1 2 9 10 11 15 18 21 27 31 41 43 50

low high

1 2 9 10 11 15 18 21 27 31 41 43 50

low high

1 2 9 10 11 15 18 21 27 31 41 43 50

low high

1 2 9 10 11 15 18 21 27 31 41 43 50

highlow

43

Every time that we loop, we eliminate half
the array. We will never check all n

elements of the array; therefore, it can’t be

O(n).

Whenever we reduce the amount of work

done by half, that generally gives us O(logN)

running time

private s tat ic int binary_search(int[] array, int n) {
int low = 0;
int high = array.length - 1;
while(low <= high) {

int mid = (low + high) / 2;

int result = x.compareTo(array[mid])

44

if(result = 0) {
return mid;

}
else if(result > 0){

low = mid + 1;
}
else {

high = mid - 1;
}

}
return -1;

}

We can do binary search

on an array of Strings
using the compareTo()

method

public static int binary_search_recursive(????????????) {
if (low > high) {

return -1;
}
int mid = (low + high) / 2;
if (array[mid] == n) {

return mid;
}
else if (n > array[mid]) {

return binary_search_recursive(????????????); // right half
}
else {

return binary_search_recursive(????????????); // left half
}

}

Binary Search can also be implemented using recursion

45

public static int binary_search_recursive(int[] array, int n, int low, int high) {
if (low > high) {

return -1; // base case
}
int mid = (low + high) / 2;
if (array[mid] == n) {

return mid; // found n
}
else if (n > array[mid]) {

return binary_search_recursive(array, n, mid + 1, high); // right half
}
else {

return binary_search_recursive(array, n, low, mid - 1); // left half
}

}

Binary Search can also be implemented using recursion

46

Lab 12

47

	Slide 1: CSCI 132:
	Slide 2: Announcements
	Slide 3: Searching
	Slide 4: Searching
	Slide 5: Searching
	Slide 6
	Slide 7: What if our array is sorted?
	Slide 8: Target Value: 27
	Slide 9: Target Value: 27
	Slide 10: Target Value: 27
	Slide 11: Target Value: 27
	Slide 12: Target Value: 27
	Slide 13: Target Value: 27
	Slide 14: Target Value: 27
	Slide 15: Target Value: 27
	Slide 16: Target Value: 27
	Slide 17: Target Value: 27
	Slide 18: Target Value: 27
	Slide 19: Target Value: 27
	Slide 20: Target Value: 27
	Slide 21: Target Value: 27
	Slide 22: Target Value: 27
	Slide 23: Target Value: 27
	Slide 24: Target Value: 27
	Slide 25: Target Value: 27
	Slide 26: Target Value: 27
	Slide 27: Target Value: 27
	Slide 28: Target Value: 27
	Slide 29: Target Value: 27
	Slide 30
	Slide 31
	Slide 32: Running time?
	Slide 33: Running time?
	Slide 34: Running time?
	Slide 35: Running time?
	Slide 36: Running time?
	Slide 37: Running time?
	Slide 38: Running time?
	Slide 39
	Slide 40: private static int binary_search(int[] array, int n) { int low = 0; O(1)
	Slide 41
	Slide 42: Why O(log n) ?
	Slide 43: Why O(log n) ?
	Slide 44
	Slide 45
	Slide 46
	Slide 47

