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Announcements

• Friday will be a workday (no lecture)

• Lab 12 due tomorrow @ 11:59PM

• Program 5 posted, Sunday due 12/8

• Rubber duck extra credit will be 

posted soon
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

maze[0]
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

maze[1]
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

maze[1][0]
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

maze[1][2]
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

maze[y][x]
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

Goal: Move forward one spot

We need to know which direction we are facing first! 

(2, 1)

maze[y][x]

(2, 2)

How do we know direction we are facing?
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

Goal: Move forward one spot

We need to know which direction we are facing first! 

(2, 1)

maze[y][x]

(2, 2)

Our character Y value and our hand’s Y value is the same,

And our character’s X value is less than our hands’ X value
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

How do we detect if we can move forward?
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

Make one move by recursively calling 

the method with the new values

makeMove(x, y, hand_x, hand_y)
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

Make one move by recursively calling 

the method with the new values

makeMove(x, y, hand_x, hand_y)
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

Turn right and move forward one spot?
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(??, ??, ??, ??);
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1); 1. Turn right

2. Go forward

3. Turn left
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == ‘.’){

}

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

1. Turn right

2. Go forward

3. Turn left

// Turn left

Right

Forward

Left
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == ‘.’ && maze[y-1][x]=='#’){

}

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

// Turn left

Right

Forward

Left

You will have need if statements for North, East, South, and West

Lots of if statements ☺
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[ [ #, #, #, # ,#],

[ #, . , . , . , #],

[ . , . ,# , . , #],

[ #, #, #, . , #],

[ #, . , . , . , . ],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == ‘.’ && maze[y-1][x]=='#’){

}

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

// Turn left

Right

Forward

Left

You will have need if statements for North, East, South, and West

Lots of if statements ☺

This code is technically 
not complete, you will 

need to add some more 
code here (backtracking)
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= Backtracking path
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Running Time of Sorting Algorithms

Bubble Sort ??? ???
Selection Sort ??? ???

Merge Sort ??? ???

Quick Sort ??? ???

Brief Description Running Time
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public int[] selectionSort(int[] array) {
int n = array.length;
for(int i = 0; i < n -1; i++) {

int min_index_so_far = i;
for (int j = i + 1; j < n; j++) {

if(array[j] < array[min_index_so_far]) {
min_index_so_far = j;

}
}
int temp = array[i];
array[i] = array[min_index_so_far];
array[min_index_so_far] = temp;

}
return array;

}
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You will not be tested about today’s sorting algorithms. 
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Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section
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Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14
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Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14
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Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

27 38 43 3 9 82 10 14
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Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

27 38 43 3 9 82 10 14
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Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

3 27 38 43 9 82 10 14
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Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

3 27 38 43 9 82 10 14

3 9 27 38 43 82 10 14
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Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14
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Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14
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Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14
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Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14
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Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14

3 9 10 14 27 38 43 82
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Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the 

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14

3 9 10 14 27 38 43 82

Running time: O(n2)
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Insertion Sort

void insertionSort(int array[]) {
int size = array.length;
for (int step = 1; step < size; step++) {

int key = array[step];
int j = step - 1;
// Compare key with each element on the left of it until an element smaller than
// it is found.
// For descending order, change key<array[j] to key>array[j].

while (j >= 0 && key < array[j]) {
array[j + 1] = array[j];
--j;

}
// Place key at after the element just smaller than it.
array[j + 1] = key;

}
}
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

38 27 43 3 9 82 10 14
N = 8

Gap = 4
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

38 27 43 3 9 82 10 14
N = 8

Gap = 4

4
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 43 3 38 82 10 14
N = 8

Gap = 4

4
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 43 3 38 82 10 14
N = 8

Gap = 4

4
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 43 3 38 82 10 14
N = 8

Gap = 4

4
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

4
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

4
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

2
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1
1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1
1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1
1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

(do it again ??)
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1



75

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 14 27 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1
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Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 14 27 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

Running time: O(n2)
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Cocktail Shaker Sort

Double Sided Bubble Sort

https://en.wikipedia.org/wiki/Cocktail_shaker_sort

Running time: O(n2)

https://en.wikipedia.org/wiki/Cocktail_shaker_sort
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Does anyone have any ideas for a very bad sorting 

algorithm, but still works?
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Does anyone have any ideas for a very bad sorting 

algorithm, but still works?

If we are really lucky, our algorithm is insanely fast

If we are really unlucky, our algorithm will never finish
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Bogo Sort (stupid sort) randomly shuffles the array until its sorted

while not sorted(array):

shuffle(array)

Running time: O(pain) / O(∞) if we don’t keep track of permutations 

checked

O(n!) if we keep track of permuations
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Bogo Sort (stupid sort) randomly shuffles the array until its sorted

while not sorted(array):

shuffle(array)

Running time: O(pain) if we don’t keep track of permutations checked

O(n!) if we keep track of permutations

Best case scenario, this is the 

most efficient sorting algorithm!

This sorting algorithm is a joke, please don’t take this one seriously…
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Sorting Algorithms Visualized

https://youtu.be/kPRA0W1kECg

https://youtu.be/kPRA0W1kECg
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