
CSCI 132:
Basic Data Structures and Algorithms

Sorting (Part 4)

Reese Pearsall + Iliana Castillon
Fall 2024
https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html 1*All images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/fall2024/132/main.html

2

Announcements

• Friday will be a workday (no lecture)

• Lab 12 due tomorrow @ 11:59PM

• Program 5 posted, Sunday due 12/8

• Rubber duck extra credit will be

posted soon

3

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

4

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

maze[0]

5

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

maze[1]

6

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

maze[1][0]

7

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

maze[1][2]

8

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

maze[y][x]

9

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

Goal: Move forward one spot

We need to know which direction we are facing first!

(2, 1)

maze[y][x]

(2, 2)

How do we know direction we are facing?

10

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

Goal: Move forward one spot

We need to know which direction we are facing first!

(2, 1)

maze[y][x]

(2, 2)

Our character Y value and our hand’s Y value is the same,

And our character’s X value is less than our hands’ X value

11

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}

12

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

How do we detect if we can move forward?

13

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

14

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

Make one move by recursively calling

the method with the new values

makeMove(x, y, hand_x, hand_y)

15

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

Make one move by recursively calling

the method with the new values

makeMove(x, y, hand_x, hand_y)

16

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

17

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

18

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

Turn right and move forward one spot?

19

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

20

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(??, ??, ??, ??);

21

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

22

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

23

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

24

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}
if(maze[hand_y][hand_x] == ‘.’){

}

makeMove(x, y, hand_x, hand_y)

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1); 1. Turn right

2. Go forward

3. Turn left

25

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == ‘.’){

}

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

1. Turn right

2. Go forward

3. Turn left

// Turn left

Right

Forward

Left

26

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == ‘.’ && maze[y-1][x]=='#’){

}

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

// Turn left

Right

Forward

Left

You will have need if statements for North, East, South, and West

Lots of if statements ☺

27

[[#, #, #, # ,#],

[#, . , . , . , #],

[. , . ,# , . , #],

[#, #, #, . , #],

[#, . , . , . , .],

]

char[][] maze

(2, 1)

maze[y][x]

(2, 2)

if(y == hand_y && hand_x > x)
direction = "North";

}
…
if(direction.equals("North")) {

if(maze[hand_y][hand_x] == ‘.’ && maze[y-1][x]=='#’){

}

if(maze[hand_y][hand_x] == '#' && maze[y-1][x] == ‘.’){

}

makeMove(x, y-1, hand_x, hand_y-1);

(1, 1) (1, 2)

makeMove(x+1, y, hand_x, hand_y+1);

// Turn left

Right

Forward

Left

You will have need if statements for North, East, South, and West

Lots of if statements ☺

This code is technically
not complete, you will

need to add some more
code here (backtracking)

28

= Backtracking path

29

30

Running Time of Sorting Algorithms

Bubble Sort ??? ???
Selection Sort ??? ???

Merge Sort ??? ???

Quick Sort ??? ???

Brief Description Running Time

31

public int[] selectionSort(int[] array) {
int n = array.length;
for(int i = 0; i < n -1; i++) {

int min_index_so_far = i;
for (int j = i + 1; j < n; j++) {

if(array[j] < array[min_index_so_far]) {
min_index_so_far = j;

}
}
int temp = array[i];
array[i] = array[min_index_so_far];
array[min_index_so_far] = temp;

}
return array;

}

32

You will not be tested about today’s sorting algorithms.

33

Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

34

Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

35

Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

36

Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

27 38 43 3 9 82 10 14

37

Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

27 38 43 3 9 82 10 14

38

Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

3 27 38 43 9 82 10 14

39

Insertion Sort

38 27 43 3 9 82 10 14

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

38 27 43 3 9 82 10 14

38 27 43 3 9 82 10 14

27 38 43 3 9 82 10 14

3 27 38 43 9 82 10 14

3 9 27 38 43 82 10 14

40

Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

41

Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

42

Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14

43

Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14

44

Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14

3 9 10 14 27 38 43 82

45

Insertion Sort

We divide our array into two sections. A sorted section, and an unsorted section. We iterate through the

array, and for each iteration, we move one element from the unsorted section to the sorted section

3 9 27 38 43 82 10 14

3 9 10 27 38 43 82 14

3 9 10 14 27 38 43 82

Running time: O(n2)

46

Insertion Sort

void insertionSort(int array[]) {
int size = array.length;
for (int step = 1; step < size; step++) {

int key = array[step];
int j = step - 1;
// Compare key with each element on the left of it until an element smaller than
// it is found.
// For descending order, change key<array[j] to key>array[j].

while (j >= 0 && key < array[j]) {
array[j + 1] = array[j];
--j;

}
// Place key at after the element just smaller than it.
array[j + 1] = key;

}
}

47

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

38 27 43 3 9 82 10 14
N = 8

Gap = 4

48

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

38 27 43 3 9 82 10 14
N = 8

Gap = 4

4

49

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 43 3 38 82 10 14
N = 8

Gap = 4

4

50

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 43 3 38 82 10 14
N = 8

Gap = 4

4

51

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 43 3 38 82 10 14
N = 8

Gap = 4

4

52

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

4

53

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

4

54

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

Gap = 2

2

55

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 27 10 3 38 82 43 14
N = 8

Gap = 4

Gap = 2

2

56

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2

57

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2

58

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2

59

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2

60

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 82 43 14
N = 8

Gap = 4

Gap = 2

2

61

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

2

62

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

2

63

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

9 3 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

64

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

65

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

66

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

67

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1
1

68

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 38 14 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1
1

69

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1
1

70

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

71

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

72

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

(do it again ??)

73

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

74

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

75

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

76

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 27 14 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

77

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 14 27 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

1

78

Shell Sort

Compare items that are distant from each other. After each iteration, decrease the gap size.

3 9 10 14 27 38 43 82
N = 8

Gap = 4

Gap = 2

Gap = 1

Running time: O(n2)

79

Cocktail Shaker Sort

Double Sided Bubble Sort

https://en.wikipedia.org/wiki/Cocktail_shaker_sort

Running time: O(n2)

https://en.wikipedia.org/wiki/Cocktail_shaker_sort

80

Does anyone have any ideas for a very bad sorting

algorithm, but still works?

81

Does anyone have any ideas for a very bad sorting

algorithm, but still works?

If we are really lucky, our algorithm is insanely fast

If we are really unlucky, our algorithm will never finish

82

Bogo Sort (stupid sort) randomly shuffles the array until its sorted

while not sorted(array):

shuffle(array)

Running time: O(pain) / O(∞) if we don’t keep track of permutations

checked

O(n!) if we keep track of permuations

83

Bogo Sort (stupid sort) randomly shuffles the array until its sorted

while not sorted(array):

shuffle(array)

Running time: O(pain) if we don’t keep track of permutations checked

O(n!) if we keep track of permutations

Best case scenario, this is the

most efficient sorting algorithm!

This sorting algorithm is a joke, please don’t take this one seriously…

84

Sorting Algorithms Visualized

https://youtu.be/kPRA0W1kECg

https://youtu.be/kPRA0W1kECg

	Slide 1: CSCI 132: Basic Data Structures and Algorithms
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84

