
CSCI 476: Computer Security
Lecture 3: Operating Systems (Processes and forking())

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1*all images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcements

Lab 0 due on Sunday 1/29 @ 11:59 PM

No in-person lecture next Wednesday (2/1)

• I’ll post an asynchronous lecture video to the course web page

Gerard is here

3

Course Questionnaire Results

Class?

Have you taken Operating Systems (CSCI 460)

4

Course Questionnaire Results

“I am a big procrastinator”

5

Course Questionnaire Results

“I am a big procrastinator”

“This class seems relevant to

my career path”

6

Course Questionnaire Results

“I am a big procrastinator”

“This class seems relevant to

my career path”

“Im interested in learning

about penetration testing”

7

Course Questionnaire Results

“I am a big procrastinator”

“This class seems relevant to

my career path”

“Im interested in learning

about penetration testing”

“The best cereal is just milk”

8

To understand the technical aspects of

security, we must have a good

understanding of how computers work

operating systems

9

Software

Hardware

CPU Memory

print(“hello world!”)

Operating System

The Operating System

10

Software

Hardware

CPU Memory

print(“hello world!”)

Operating System

The Operating System

11

1. Process Manager

2. Interface Manager

3. Memory Manager

4. Traffic Manager

5. Illusion Manager

“The Coach”

“The Bouncer”

“The Farmer”

“The Judge”

“The Illusionist”

12

1. Process Manager

2. Interface Manager

3. Memory Manager

4. Traffic Manager

5. Illusion Manager

“The Coach”

“The Bouncer”

“The Farmer”

“The Judge”

“The Illusionist”

This will be the

focus of today’s

lecture

13

Source code to binary

**THIS PROCESS IS NOT TRUE FOR EVERY LANGUAGE

Preprocessor

• Removal of comments

• Expand Macros

Compiler

• Converted to assembly code

• .s file

Linker
Program A

Library 2

Library 1

.exe

./hello_world

14

What happens when we run ?./hello_world

It gets turned into a process

A process is an instance of a running program on a computer

15

A process is an instance of a running program

on a computer

All processes have the following data while they are running:

1. Executable Code

2. Associated Data

3. Execution Context/Bookkeeping

information

Process A Information

Process A Data

Process A Executable Code

Process B Information

Process B Data

Process B Executable Code

Main Memory

(info that the OS needs to handle the process)

16

Ok, but how do we actually create a process?

• In the Unix family (and others), we use fork() to create

a new process

Parent Process

(such as shell/terminal)

Parent Process

NEW Child Process

fork()

fork() duplicates a process so that instead of one process, you get two!

17

fork() duplicates a process so that instead of one process, you get two!

How can we tell the parent and child apart?

int main(void) {

int pid;

pid = fork();

if (0 == pid) {

// I'm the child

printf("Hi, I'm the child. \n");

}

sleep(1);

printf("I'm the parent.);

return 0;

}

We check the return
value of fork()!

18

fork() duplicates a process so that instead of one process, you get two!

How can we tell the parent and child apart?

int main(void) {

int pid;

pid = fork();

if (0 == pid) {

// I'm the child

printf("Hi, I'm the child. \n");

}

sleep(1);

printf("I'm the parent.);

return 0;

}

We check the return
value of fork()!

1. Remember, fork()creates two

process that are both actively running

parent child

19

fork() duplicates a process so that instead of one process, you get two!

How can we tell the parent and child apart?

int main(void) {

int pid;

pid = fork();

if (0 == pid) {

// I'm the child

printf("Hi, I'm the child. \n");

}

sleep(1);

printf("I'm the parent.);

return 0;

}

We check the return
value of fork()!

2. fork() always returns 0 for the

child process, the parent process

jumps to the code after the if

statement

parent

child

20

fork() duplicates a process so that instead of one process, you get two!

How can we tell the parent and child apart?

int main(void) {

int pid;

pid = fork();

if (0 == pid) {

// I'm the child

printf("Hi, I'm the child. \n");

}

sleep(1);

printf("I'm the parent.);

return 0;

}

We check the return
value of fork()!

3. fork() always returns 0 for the

child process, so the child process will

execute the code in the if statement

parent

child

21

Demo?

fork1.c

22

Issue: We want our child process to run an entirely new
program (hello_world c program)

We use the exec() family of functions to execute a different program

There are many different
forms of the exec()

function call

23

Issue: We want our child process to run an entirely new
program (hello_world c program)

We use the exec() family of functions to execute a different program

There are many different
forms of the exec()

function call

This will invoke a program
called hello

24

Fork() and Exec()

25

Fork() and Exec()

Parent code

Child code

26

Fork() and Exec()
output

27

Demo?

forkandexec.c

28

Tl;dr

The programs we run get turned into a process

fork() is used to create a new process

• The parent process is typically the shell/terminal,

and waits for the child process to finish

• The child process runs exec() to run our program

you can kill children with
the kill() function

or kill command

29

Any ideas what might happen?

30

“Oh, these forks() aren’t homemade.

They were made in factory. A fork()

bomb factory. This is a fork() bomb”

31

A process is an instance of a running program

on a computer

All processes have the following data while they are running:

1. Executable Code

2. Associated Data

3. Execution Context/Bookkeeping

information

Process A Information

Process A Data

Process A Executable Code

Process B Information

Process B Data

Process B Executable Code

Main Memory

(info that the OS needs to handle the process)

32

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

33

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

Every process has a unique

process ID (PID)

We can use the PID to search for process, kill process, fork new process, etc

34

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

Each process has a program

counter (PC), which tells the

CPU the next instruction to

run in the process

35

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

PCB also maintains locations

for the process Data and

Code

36

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

37

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

PCB keeps track of who their

parent is, and any child process

(good parenting)

38

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

PCB keeps track of who their

parent is, and any child process

(good parenting)

39

3. Execution Context/Bookkeeping information

• Each process has a Process

Control Block (PCB)

→Simply just a data structure that

holds information

→The name of this varies by OS

Example PCB:

A process goes through many

states

• Active (running)

• Blocked

• Waiting

• Suspended

40

1. Executable Code

2. Associated Data

3. Execution Context/Bookkeeping

information
(info that the OS needs to handle the process)

A process is an instance of a running program

on a computer

All processes have the following data while they are running:

We will talk about

what goes here on

Friday

41

1. Process Manager
“The Coach”

./hello_world Fork() and exec()
Program is now

running as a
process

The OS manages many active

processes all at once, and they

must create processes, manage

current process, and control

which processes do what

42

1. Process Manager

2. Interface Manager

3. Memory Manager

4. Traffic Manager

5. Illusion Manager

“The Coach”

“The Bouncer”

“The Farmer”

“The Judge”

“The Illusionist”

Next time…

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

