y

CSCIl 476: Computer Security

Lecture 3: Operating Systems (Processes and forking ())

Reese Pearsall
Spring 2023

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html *all images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

Announcements

Gerard Is here

Lab O due on Sunday 1/29 @ 11:59 PM

No in-person lecture next Wednesday (2/1)
* |'ll post an asynchronous lecture video to the course web page

Course Questionnaire Results

Class?

@ Freshman

@ Sophomore

@ Junior

@ Senior

@ Graduate Student
@ High School Student
@ Other

‘

How comfortable are you C?
79 responses

40

30 32 (40.5%)
27 (34.2%)
20

10 13 (16.5%)

Have you taken Operating Systems (CSCI 460)

How comfortable are you with reading assembly code?
79 responses

30
29 (36.7%)

20
18 (22.8%) 19 (24.1%)

10 12 (15.2%)

1(1.3%)

MONTANA

STATE UNIVERSITY

Course Questionnaire Results

“I am a big procrastinator”

MONTANA

STATE UNIVERSITY

M

Course Questionnaire Results

“I am a big procrastinator”

“This class seems relevant to
my career path”

MONTANA

STATE UNIVERSITY

Course Questionnaire Results

“Im interested in learning

“l am a big procrastinator” about penetration testing”

“This class seems relevant to
my career path”

MONTANA

STATE UNIVERSITY

Course Questionnaire Results

@pmcr@
“This class seems relevant to « o .
my career path” > The best cereal is just milk

MONTANA

STATE UNIVERSITY

“Im interested in learning
about penetration testing”

To understand the technical aspects of
security, we must have a good :
understanding of how eemputers work :

operating systems If one is to understand the great mystery,
one must study all its aspects.

The Operating System

Software

Operating System Central

Processing

Unit Registers
S

Hardware

;“F‘;"f !: ’

RV

Primary Storage

MONTANA
STATE UNIVERSITY

The Operating System

Software
o
E
Operating System S
Hardware L
s
IS
T

MONTANA
STATE UNIVERSITY

1. Process Manager
“The Coach”

2. Interface Manager

“The Bouncer”

3. Memory Manager

“The Farmer”

4. Traffic Manager

“The Judge”
5. lllusion Manager

“The lllusionist”

[

M= .. "'. '

" Wi & gt el
AR

rk®

11

The jobs of an Operating System

This will be the
\ focus of today’s
/ lecture '

1. Process Manager
“The Coach”

2. Interface Manager

“The Bouncer”

3. Memory Manager

“The Farmer”

4. Traffic Manager

“The Judge”
5. lllusion Manager

“The lllusionist”

12

Source code to binary

0000000000000000 <main>:
0: f3 @0

f le fa endbr64
: : 4 55 push %rbp
f#include <stdio.h> 5: 48 89 e5 mov %rsp,%rbp
_ i 8 48 83 ec 10 sub $0x10,%rsp
int main() I . ci 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # 13 <main+0x13>
rintf("Hello WOrld! \n"); P < m | 13: e8 00 00 00 00 callqg 18 <main+0x18>
P reprocessor O I er 18: c7 45 f4 00 00 00 00 movl $0x0, -0xc (%rbp)
b5 c7 45 f8 03 00 00 00 movl $0x3,-0x8(%rbp)
) 26: 8b 55 f4 mov -0xc(%rbp) ,%edx A
int x = 0; 29: 8b 45 f8 mov -Ox8(%rbp),%eax SS
int y = 3; > > 2c: 01 do add %edx , seax em
2e: 89 45 fc mov %eax, -0x4(%rbp) /
. _ . 31: 8b 4d fc mov -Ox4(%rbp),%ecx e/‘
intz=x+y; 34: 8b 55 8 mov -0x8(%rbp),%edx
37: 8b 45 f4 mov -0xc(%rbp) ,%eax
printf("sd %d %d \n",x,y,z); 3a: 89 c6 mov %eax,%esi
return 0: R | f 3c: 48 8d 3d 00 00 00 00 lea 0x0(%rip),%rdi # 43 <main+0x43>
’ ° 43: b8 00 060 00 00 mov $0x0, %seax
emova 0 Comments 48: e8 00 00 00 00 callqg 4d <main+0x4d>
- ° Expand Macros ;g :g 00 00 00 00 T::veq $0x0, %seax
53: c3 - retq

« Converted to assembly code

« .sfile

1 00000000 00000100 0000000000000000
2| 01011110 00001100 11000010 0000000000000010
3 11101111 00010110 0000000000000101
Program A 4 11101111 10011110 0000000000001011
511111000 10101101 11011111 0000000000010010
Linker 7 | 12202312 00090010 23213012 vooacoanens1OI:
° /he l l O WOrld h << 8| 11110100 10101101 11011111 0000000000011110
i 9 | 00000011 10100010 11011111 0000000000100001
10 | 11101111 00000010 11111011 0000000000100100

l.-k)]_ 11| 01111110 11110100 10101101
| rEﬂl’\/ 12 | 11111000 10101110 11000101 0000000000101011
13| 00000110 10100010 11111011 0000000000110001
. 14 | 11101111 00000010 11111011 0000000000110100
|_|bra ry 2 15 01010000 11010100 0000000000111011
16 00000100 0000000000111101

MONTANA

STATE UNIVERSITY

What happens when we run ./hello world ?

It gets turned into a process

A process iIs an instance of a running program on a computer

Processes Performance App history Startup Users Details Services
37% ¥ 54% 1% 1% 17%
Mame Status CPU Memaory Disk Metwork GPU | GPU engine Power usage Power usage t...
> (@ Firefox (42) 6.3% 1,3045MB 05MB/s 3.1 Mbps 9.0% GPUQ- Video Decode _ Very low ~
> e Google Chrome (14) 0.8% 4349 MB 0MB/s 0 Mbps 0% Low Very low
> 9 Discord (32 bit) (6) 43% 328.8 MEB 0 MB/s 8.7 Mbps 6.6% GPUOD- Video Encode Moderate Very low
> E Search 5.0% 1859 MB 02MB/s 0.8 Mbps 0% GPUD-3D Moderate Very low
> [E] Antimalware Service Executable 3.8% 178.2 MB 0.1 MB/s 0 Mbps 0% Moderate Very low
E Google Chrome 0% 1734 MEB 0MB/s 0 Mbps 0% Very low Very low
A% Slack 0% 95.5 MB 0 MB/s 0 Mbps 0% Very low Very low
@ Steam Client WebHelper 0% 89.1 MB 0 MB/s 0 Mbps 0% Very low Very low
e Google Chrome 0% 82.6 MB 0 MB/s 0 Mbps 0% Very low Very low
> a Microsoft PowerPoint (32 bit) (2) 0.1% 69.3 MB 0 MB/s 0 Mbps 0% Very low Very low
SteelSeries GG Core 0.2% 67.7 MB 0 MB/s 0 Mbps 0% Very low Very low
@ Steam Client WebHelper 0% 66.1 MB 0 MB/s 0 Mbps 0% Very low Very low

MONTANA

STATE UNIVERSITY

A process iIs an instance of a running program Main Memory

Oon a computer

All processes have the following data while they are running: Process A Information

Process A Data

Process A Executable Code

1. Executable Code

2. ASSOClatEd Data Process B Information

Process B Data

Process B Executable Code

3. Execution Context/Bookkeeping
iInformation

(info that the OS needs to handle the process)

15

Ok, but how do we actually create a process?

* In the Unix family (and others), we use fork () to create

a New process
Parent Process
fork () '

Parent Process

(such as shell/terminal) N NEW Child Process

fork () duplicates a process so that instead of one process, you get two!

MONTANA

STATE UNIVERSITY

fork () duplicates a process so that instead of one process, you get two!

How can we tell the parent and child apart?

int main(void) {
int pid; We check the return
value of fork ()!

pid = fork();
1f (0 == pid) {
// I'm the child
printf ("Hi, I'm the child. \n");

sleep(1l);
printf ("I'm the parent.);

return 0;

}
17

fork () duplicates a process so that instead of one process, you get two!

How can we tell the parent and child apart?

int main (void) { We check the return
int pid; value of fork ()!

pid = fork(); m<

1f (0 == pid)
// I'm the child
printf ("Hi, I'm the child. \n");

sleep(1l);
printf ("I'm the parent.);

1. Remember, fork () creates two
process that are both actively running

return 0;

}
18

fork () duplicates a process so that instead of one process, you get two!
How can we tell the parent and child apart?

int main(void) { We check the return
int pid; value of fork ()!
pid = fork(); <:

1f (0 == pid) {
// I'm the child
printf ("Hi, I'm the child. \n");

sleep (1); Y parent

printf ("I'm the parent.);
2. fork () always returns O for the

return 0; child process, the parent process
, jumps to the code after the if

} statement

19

fork () duplicates a process so that instead of one process, you get two!

How can we tell the parent and child apart?

int rpain (yoid) { We check the return
int pid; value of fork ()!

pid = fork();

1f (0 == pid) {
// I'm the child C
printf ("Hi, I'm the child. \n");

sleep (1); ent

rintf("I'm the parent.);
P (P) 3. fork () always returns O for the
child process, so the child process will
execute the code in the if statement

return 0;

}
20

Demo?

forkl.c

/

M MONTANA
STATE UNIVERSITY

Issue: We want our child process to run an entirely new
program (hello world c program)

We use the exec () family of functions to execute a different program

EAREN There are many different
forms of the exec ()

function call

PARENT

char *namel[Z];:

namel[0] = F
name[l] = F
execve(name[0O], name,) ;

22

Issue: We want our child process to run an entirely new
program (hello world c program)

We use the exec () family of functions to execute a different program

FARENT There are many different
forms of the exec ()

function call

PARENT

char *namel[Z];:

namel[0] = :
name[l] = ; This will invoke a program
execve(name[(], name,) ; called hello

N o

Fork() and Exec()

int main(void) |
int pid;

pid = fork();
if (0 == pid) {
// I'm the child

char *name[’];

name[0] = "./hello";

name[l] = NULL;
execve(name[O], name, NULL):

_exit(0);

}
sleep(l);

printf("I'm the parent. My child has pid %d\n", pid);

return 0O;

STATE UNIVERSITY

Fork() and Exec()

int main(void) |
int pid;

pid = fork();
if (0 == pid) {

// I'm the child

char *name[’];

name[0] = "./hello";

name[l] = NULL;
execve(name[O], name, NULL):

_exit(0);
¥
sleep(l);
printf("I'm the parent. My child has pid %d\n", pid); _
Parent code
return 0;

STATE UNIVERSITY

Fork() and Exec()

int main(void) | output
int pid; [01/25/23]seed@VM:~$./forkexec
Hello from the C program!
pid = fork(): I'm the parent. My child has pid 33578

if (0 == pid) {
// I'm the child

char *name[’];

name[0] = "./hello";

name[l] = NULL;
execve(name[O], name, NULL):

_exit(0);

}
sleep(1);

printf("I'm the parent. My child has pid %d\n", pid);

return 0O;

}
STATE UNIVERSITY

Demo?

forkandexec.c

M MONTANA
RSIT

STATE UNIVERSITY

Tl;dr
The programs we run get turned Into a process

fork() Is used to create a new process

* The parent process is typically the shell/terminal,
and waits for the child process to finish

* The child process runs exec() to run our program

Contents

9.4 Process Primitives

4 H e il you can kill children with

9.4.2 Watching Your Children Die. the kill () function
943 Running New Programs or ki 11 command
9.44 A Bit of History: viork().....

9.4.5 Killing Yourself
9.4.6 Killing Others
9.4.7 Dumping Core

..............

95 Simnle Children

28

#include <sys/types.h>
#include <unistd.h>

Any ideas what might happen?
int main()

{
while(1l) {
fork();
}
return 0;
}

M MONTANA
RSI

STATE UNIVERSITY

#include <sys/types.h>
#include <unistd.h>

int main()

{

fork(); i PRGN T, T IR el
} “Oh, these forks() aren’t homemade.

They were made in factory. A fork()
return 0; bomb factory. This is a fork() bomb’

MONTANA
STATE UNIVERSITY

A process iIs an instance of a running program Main Memory

Oon a computer

All processes have the following data while they are running: Process A Information

Process A Data

Process A Executable Code

1. Executable Code

2. ASSOClatEd Data Process B Information

Process B Data

Process B Executable Code

3. Execution Context/Bookkeeping
iInformation

(info that the OS needs to handle the process)

31

3. Execution Context/Bookkeeping information

« Each process has a Process
Control Block (PCB)

-> Simply just a data structure that
holds information

- The name of this varies by OS

Example PCB:

Pointer to the process parent

Pointer to the process child Process State
Process Identification Number
Process Priority
Program Counter
Registers
Pointers to Process Memory
Memory Limits

List of open Files

crented by Notes Jawm

32

3. Execution Context/Bookkeeping information

« Each process has a Process

Control Block (PCB)

-> Simply just a data structure that

holds information

- The name of this varies by OS

Every process has a unigue

process ID (PID)

Example PCB:

Pointer to the process parent

Pointer to the process child Process State
Process Priority
Program Counter
Registers

Pointers to Process Memory

Process Name - Memory Limits
at-spi2-registryd seed 0 1870 196.0KiB 120.0 KiB
at-spi-bus-launcher seed o 1779 292.0KiB 28.0KiB List of open Files
B bash seed 0 16245 1.6 MiB 3.1 MiB
B bash seed 0 20664 1.8 MiB 72.7 MiB
dbus-daemon seed 0 1560 1.5 MiB 420.0KiB . s »
We can use the PID to search for process, kill process, fork new process, etc ereated by Notes, Jam

33

3. Execution Context/Bookkeeping information

« Each process has a Process
Control Block (PCB)

-> Simply just a data structure that
holds information
- The name of this varies by OS

Each process has a program
counter (PC), which tells the
CPU the next instruction to
run in the process

Example PCB:

Pointer to the process parent

Pointer to the process child Process State

Process Identification Number

Process Priority

Program Counter

Registers
Pointers to Process Memory
Memory Limits

List of open Files

crented by Notes Jawm

34

3. Execution Context/Bookkeeping information

« Each process has a Process Example PCB:
Control Block (PCB)

]] Pointer to the process parent
-> Simply just a data structure that
holds information
. . Process Identification Number
- The name of this varies by OS

Process Priority

Pointer to the process child Process State

Program Counter

Registers

PCB also maintains locations

for the process Data and
Code

Memory Limits

List of open Files

crented by Notes Jawm

35

3. Execution Context/Bookkeeping information

« Each process has a Process
Control Block (PCB)

-> Simply just a data structure that
holds information

- The name of this varies by OS

Example PCB:

Pointer to the process parent

Pointer to the process child Process State
Process Identification Number
Process Priority
Program Counter
Registers
Pointers to Process Memory

Memory Limits

List of open Files

crented by Notes Jawm

36

3. Execution Context/Bookkeeping information

« Each process has a Process

Example PCB:
Control Block (PCB)
]] Pointer to the process parent
- Slmpl;_/ just a c!ata structure that Drocess State
holds information = == s
. . tificati
- The name of this varies by OS rotess EenTTeaHon THmRE

Process Priority

Program Counter

Registers
PCB keeps traCk Of Who the|r Pointers to Process Memory
parent is, and any child process Memory Limits
(gOOd parent”’]g) List of open Files

crented by Notes Jawm

37

3. Execution Context/Bookkeeping information

« Each process has a Process

Example PCB:
Control Block (PCB)
]] Pointer to the process parent
- Slmpl;_/ just a c!ata structure that Drocess State
holds information = == s
. . tificati
- The name of this varies by OS rotess EenTTeaHon THmRE

Process Priority

Program Counter

Registers
PCB keeps traCk Of Who the|r Pointers to Process Memory
parent is, and any child process Memory Limits
(gOOd parent”’]g) List of open Files

crented by Notes Jawm

38

3. Execution Context/Bookkeeping information

« Each process has a Process

Example PCB:
Control Block (PCB)
]] Pointer to the process parent
- Slmpl;_/ just a c!ata structure that T T T
holds information - - —
. . tificati
- The name of this varies by OS rotess EenTTeaHon THmRE

Process Priority

Program Counter

A process goes through many Registers
States Pointers to Process Memory
* Active (running) Memory Limits

® BIOCked List of open Files

« Waiting

 Suspended

crented by Notes Jawm

39

A process iIs an instance of a running program
on a computer

All processes have the following data while they are running:

T

1. Executable Code

—— We will talk about
what goes hereon

2. Associated Data Friday e | et
- ification Number
3. Execution Context/Bookkeeping —— e
iInformation
(info that the OS needs to handle the process) —

40

The jobs of an Operating System

1. Process Manager
“The Coach”

The OS manages many active
processes all at once, and they
must create processes, manage
current process, and control
which processes do what

Program is now

. /hello_world — Fork() and exec() — running as a

process

MONTANA

STATE UNIVERSITY

The jobs of an @[@@[ﬁ@ﬁm@ System

Next time..

1. Process Manager
“The Coach”

2. Interface Manager

“The Bouncer”

3. Memory Manager

“The Farmer”

4. Traffic Manager

“The Judge”
5. lllusion Manager

“The lllusionist”

" M T ,e?,‘:i“,. 4{’.")'
It a|n t much but it's honest"w'ork
LY

42

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42

