
CSCI 476: Computer Security
Lecture 4: Operating Systems Review

Reese Pearsall
Spring 2023

1*all images are stolen from the internethttps://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcements

Lab 0 due Sunday at 11:59 PM

No in-person lecture on Wednesday 2/1

3

Announcements

4

Operating Systems Review

To understand the technical aspects of

security, we must have a good

understanding of how computers work

operating systems

5

1. Executable Code

2. Associated Data

3. Execution Context/Bookkeeping

information
(info that the OS needs to handle the process)

A process is an instance of a running program

on a computer

All processes have the following data while they are running:

./hello_world Fork() and exec()
Program is now

running as a
process

6

Demo time!

int main(void) {

int pid;

pid = fork();

if (0 == pid) {

// I'm the child

printf("Hi, I'm the child. \n");

}

sleep(1);

// we could wait() here

printf("I'm the parent.);

return 0;

}

7

1. Process Manager

2. Interface Manager

3. Memory Manager

4. Traffic Manager

5. Illusion Manager

“The Coach”

“The Bouncer”

“The Farmer”

“The Judge”

“The Illusionist”

8

Operating Systems Review

9

Operating Systems Review

Responsibilities of the OS?

Interface Manager
• Manages communication between apps and

hardware

10

Operating Systems Review

Responsibilities of the OS?

Interface Manager
• Manages communication between apps and

hardware

Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

11

Operating Systems Review

Responsibilities of the OS?

Interface Manager
• Manages communication between apps and

hardware

Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

Traffic Manager
• Manages which programs should be

executed by the CPU

12

Operating Systems Review

Responsibilities of the OS?

Interface Manager
• Manages communication between apps and

hardware

Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

Traffic Manager
• Manages which programs should be

executed by the CPU

Memory Manager
• Manages how physical memory is utilized

13

Operating Systems Review

Responsibilities of the OS?

Interface Manager
• Manages communication between apps and

hardware

Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

Traffic Manager
• Manages which programs should be

executed by the CPU

Memory Manager
• Manages how physical memory is utilized

14

Operating Systems Review

Responsibilities of the OS?

Interface Manager
• Manages communication between apps and

hardware

How does an application get

access to a computer's

resources?

15

Syscalls

Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

16

Syscalls

Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

17

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

18

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

19

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

EAX

EBX

ECX

EDX

The operating system have hundreds of different syscalls, and

different syscalls have different parameters, we need a way to

distinguish them

20

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

EAX

EBX

ECX

EDX

The operating system have hundreds of different syscalls, and

different syscalls have different parameters, we need a way to

distinguish them

The OS will look at the values at certain registers!

System Call Number

Address of “/bin/bc”

0 or 1

INT 0x80 send trap to kernel and

invoke the syscall

Environment variables

21

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

EAX

EBX

ECX

EDX

System Call Number

Address of “/bin/bc”

0 or 1

INT 0x80 send trap to kernel and

invoke the syscall

Environment variables

22

Syscalls

All applications run in user mode.

The code has no ability to directly access hardware

Code running in user mode must use

API/syscalls to access hardware and memory

23

Syscalls

All applications run in user mode.

The code has no ability to directly access hardware

Code running in user mode must use

API/syscalls to access hardware and memory

Code running in kernel-mode has

complete, unrestricted access to

computer resources

Reserved for the lowest-level trusted functions

of the operating system

24

Syscalls

The collective functionality and

services of the OS that manages

the computer and its resources is

called the kernel

25

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

EAX

EBX

ECX

EDX

System Call Number

Address of “/bin/bc”

0 or 1

INT 0x80 send trap to kernel and

invoke the syscall

Environment variables

26

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

EAX

EBX

ECX

EDX

System Call Number

Address of “/bin/bc”

0 or 1

INT 0x80 send trap to kernel and

invoke the syscall

Environment variables

27

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

EAX

EBX

ECX

EDX

System Call Number

Address of “/bin/bc”

0 or 1

INT 0x80 send trap to kernel and

invoke the syscall

Environment variables

28

Syscalls
Applications evoke operating system defined functions, or

system calls (syscalls), to access computing resources

syscall

Libraries handle the

system calls for us

EAX

EBX

ECX

EDX

System Call Number

Address of “/bin/bc”

0 or 1

INT 0x80 send trap to kernel and

invoke the syscall

Environment variables

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

29

Syscalls

30

Applications Layout in Memory Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

How does a program get loaded

into memory?

31

Applications Layout in Memory Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

How does a program get loaded

into memory?

An active program running on a

computer is called a process

32

Applications Layout in Memory Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

1. Executable Code

2. Associated Data

3. Execution Context/Bookkeeping

information

What does this look like?

33

Applications Layout in Memory Process Manager
• Manages how processes are structured and

how to handle many processes running at

once

What does a program look like in memory?

34

Applications Layout in Memory
Process Manager
• Manages how processes are structured and how to

handle many processes running at once

What does a program look like in memory?

Text

Executable instructions

0xFFFFFFFFFFFFFFFFFFFFFFFFF

0x00000000000000000000000

Text Segment- binary executable

instructions for the process

35

Applications Layout in Memory
Process Manager
• Manages how processes are structured and how to

handle many processes running at once

What does a program look like in memory?

Data

Static variables with values

Text

Executable instructions

0xFFFFFFFFFFFFFFFFFFFFFFFFF

0x00000000000000000000000

Data Segment- Static variables

initialized by the programmer

36

Applications Layout in Memory
Process Manager
• Manages how processes are structured and how to

handle many processes running at once

What does a program look like in memory?

BSS

Static variables without a value

Data

Static variables with values

Text

Executable instructions

0xFFFFFFFFFFFFFFFFFFFFFFFFF

0x00000000000000000000000

BSS Segment- contains statically

allocated variables that are declared, but

have not been assigned a value yet

37

Applications Layout in Memory
Process Manager
• Manages how processes are structured and how to

handle many processes running at once

What does a program look like in memory?

Heap

Space for dynamically allocated
memory

BSS

Static variables without a value

Data

Static variables with values

Text

Executable instructions

0xFFFFFFFFFFFFFFFFFFFFFFFFF

0x00000000000000000000000

Heap- memory set aside for dynamic

allocation (e.g. malloc). Grows “up” as

more memory is allocated

38

Applications Layout in Memory
Process Manager
• Manages how processes are structured and how to

handle many processes running at once

What does a program look like in memory?

Stack

Space for function variables
(temporary)

Heap

Space for dynamically allocated
memory

BSS

Static variables without a value

Data

Static variables with values

Text

Executable instructions

0xFFFFFFFFFFFFFFFFFFFFFFFFF

0x00000000000000000000000

Stack – memory for storing function

variables. Grows “down” as additional

functions are called

39

Applications Layout in Memory
Process Manager
• Manages how processes are structured and how to

handle many processes running at once

OS Kernel Space

Stack

Space for function variables
(temporary)

Heap

Space for dynamically allocated
memory

BSS

Static variables without a value

Data

Static variables with values

Text

Executable instructions

0xFFFFFFFFFFFFFFFFFFFFFFFFF

0x00000000000000000000000

1. Executable Code

2. Associated Data

3. Execution Context/Bookkeeping

information

40

Applications Layout in Memory

Demo?

41

Applications Layout in Memory
Ouput of pmap (process mapping tool)

42

Applications Layout in Memory
Ouput of pmap (process mapping tool)

“probe” is the name of our executable

43

Applications Layout in Memory
Ouput of pmap (process mapping tool)

“probe” is the name of out executable

This section is executable “x”
Text

Executable instructions

BSS

Static variables without a value

Data

Static variables with values

44

Applications Layout in Memory
Ouput of pmap (process mapping tool)

“probe” is the name of out executable

This section is executable “x”
Text

Executable instructions

Beginning of heap
BSS

Static variables without a value

Data

Static variables with values

Heap

Space for dynamically allocated
memory

45

Applications Layout in Memory
Ouput of pmap (process mapping tool)

“probe” is the name of out executable

This section is executable “x”
Text

Executable instructions

Beginning of heap
BSS

Static variables without a value

Data

Static variables with values

Heap

Space for dynamically allocated
memory

46

Applications Layout in Memory
Ouput of pmap (process mapping tool)

“probe” is the name of out executable

This section is executable “x”
Text

Executable instructions

Beginning of heap
BSS

Static variables without a value

Data

Static variables with values

Heap

Space for dynamically allocated
memory

Beginning of stack
Stack

Space for function variables
(temporary)

47

Applications Layout in Memory
Ouput of pmap (process mapping tool)

“probe” is the name of out executable

This section is executable “x”
Text

Executable instructions

Beginning of heap
BSS

Static variables without a value

Data

Static variables with values

Heap

Space for dynamically allocated
memory

Beginning of stack
Stack

Space for function variables
(temporary)

48

Applications Layout in Memory
Ouput of pmap (process mapping tool)

“probe” is the name of out executable

This section is executable “x”
Text

Executable instructions

Beginning of heap
BSS

Static variables without a value

Data

Static variables with values

Heap

Space for dynamically allocated
memory

Beginning of stack
Stack

Space for function variables
(temporary)

OS Kernel Space

49

Applications Layout in Memory
Ouput of pmap (process mapping tool)

Text

Executable instructions

BSS

Static variables without a value

Data

Static variables with values

Heap

Space for dynamically allocated
memory

Stack

Space for function variables
(temporary)

OS Kernel Space

50

Applications Layout in Memory
Ouput of pmap (process mapping tool)

51

Applications Layout in Memory
Ouput of pmap (process mapping tool)

Where is “main” located in memory?

52

Applications Layout in Memory
Ouput of pmap (process mapping tool)

Where is “main” located in memory?

main is code in our program, so it goes inside the text segment

53

Applications Layout in Memory
Ouput of pmap (process mapping tool)

Where is “printf” located in memory?

54

Applications Layout in Memory
Ouput of pmap (process mapping tool)

Where is “printf” located in memory?

printf is executable code from a shared library (libc) so we are in the memory mapping segment!

55

Applications Layout in Memory
Ouput of pmap (process mapping tool)

Where is “argv” located in memory?

argv is an array that holds the command line parameters passed into this program

56

Applications Layout in Memory
Ouput of pmap (process mapping tool)

Where is “argv” located in memory?

argv is the argument to the main function, so we are in the stack!

57

Applications Layout in Memory

We have many programs

that are actively running

on our computer

Process C

Process B

Process X

Process A

58

Applications Layout in Memory

We have many programs

that are actively running

on our computer

Process C

Process B

Process X

Process A

P
ro

c
e
s
s
 P

What if we have a program

that is bigger than out entire

main memory?

8GB
20GB

59

Applications Layout in Memory

We have many programs

that are actively running

on our computer

Process C

Process B

Process X

Process A

P
ro

c
e
s
s
 P

What if we have a program

that is bigger than out entire

main memory?

8GB
20GB

Does our computer crash?

60

Memory management

Process C

Process B

Process X

Process A

8GB

Virtual Memory uses

secondary storage to give

programs the illusion that they

have infinite storage

Secondary Storage

61

Memory management

Process C

Process B

Process X

Process A

8GB

Virtual Memory uses

secondary storage to give

programs the illusion that they

have infinite storage

Process P

Process X

Secondary Storage

We split the process

into smaller pages.

Load pages into

memory only when

needed

62

Memory management

Process C

Process P

Process B

Process X

Process A

8GB

Virtual Memory uses

secondary storage to give

programs the illusion that they

have infinite storage

Process P

Process X

Secondary Storage

We split the process

into smaller pages.

Load pages into

memory only when

needed

63

Memory management

Process C

Process P

Process B

Process X

Process A

Process P

8GB

Virtual Memory uses

secondary storage to give

programs the illusion that they

have infinite storage

Process P

Process X

Secondary Storage

We split the process

into smaller, fixed-size,

pages. Load pages into

memory only when

needed

64

Memory management

Virtual Memory uses

secondary storage to give

programs the illusion that they

have infinite storage

Constantly swapping stuff in and out of main memory

We split the process

into smaller, fixed-size,

pages. Load pages into

memory only when

needed

65

Memory management

Virtual Memory uses

secondary storage to give

programs the illusion that they

have infinite storage

A process in memory is not contiguous

We split the process

into smaller, fixed-size,

pages. Load pages into

memory only when

needed

66

Memory management

Virtual Memory uses

secondary storage to give

programs the illusion that they

have infinite storage

A process in memory is not contiguous

In probe.c, we are seeing virtual addresses!

Virtual addresses!

Physical

addresses!

We split the process

into smaller, fixed-size,

pages. Load pages into

memory only when

needed

Internal fragmentation vs external fragmentation

67

OS Review

Interface Manager
• Manages communication

between apps and

hardware

Process Manager
• Manages how

processes are

structured and how to

handle many processes

running at once

Memory Manager
• Manages how physical

memory is utilized

68

Traffic Manager
• Manages which programs should be

executed by the CPU

Illusion Manager
• Gives applications the illusion

that they have infinite storage

and resources

Process A

Process B

Process C

Process D

(Ready)

(Ready)

(Urgent)

(Blocked)

CPU

“Unlimited RAM”

HDD

Virtual Memory

69

1. Process Manager

2. Interface Manager

3. Memory Manager

4. Traffic Manager

5. Illusion Manager

“The Coach”

“The Bouncer”

“The Farmer”

“The Judge”

“The Illusionist”

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69

