
CSCI 476: Computer Security
Buffer Overflow Attack (Part 2)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1*all images are stolen from the internet

Exploiting a vulnerable program

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcements

Lab 2 (Shellshock)

due on Sunday 2/19

3

Stack and Function Invocation

int main(){

int x = 3;

int y = 3;

foo(x,y)

int a = 0;

foo2(a);

return 0;

}

S
ta

c
k

F
ra

m
e

F
o
rm

a
t

int foo(x,y){

printf(x);

printf(y);

int z = 1;

foo2(z)

return 0;

}

int foo2(p){

printf(p);

return 0;

}

The Stack

0xFFFFF

Return Address for Main

Previous Frame Pointer

X = 3

Y = 3

X = 3

Y = 3

Return Address for foo()

Previous Frame Pointer

Z = 1

Stack

frame for

main()

Stack

frame for

foo()

p = 1

Return Address for foo2

Previous Frame Pointer

Stack

frame for

foo2()Argument 1

Argument 2

Return Address

Previous Frame Pointer

Local Variable 1

Local Variable 2

4

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

The CPU needs to keep track of two things:

1. The location of the top of stack

The register $esp points to the top of the stack

2. The location of the current stack

frame we are executing

The register $ebp points to the base of

the current stack frame$esp

$ebp

5

… previous stack frames…

THE STACK Every time a function is called, the function prologue occurs

$ esp

Value of B

Value of A

Return Address back to main()

Previous Frame Pointer

Value of x

Value of y

$ebp

Why is this helpful knowledge?

This tells us how the return address

in put onto the stack, and how these

important pointers are managed

ebp + 4

ebp + 8

ebp + 12

6

7

Reads (up to) 517 bytes of data from badfile

8

Reads (up to) 517 bytes of data from badfile

Storing the file contents into a str variable

of size 517 bytes

9

Reads (up to) 517 bytes of data from badfile

Storing the file contents into a str variable

of size 517 bytes

Calls the dummy_function()

which calls bof()

10

Reads (up to) 517 bytes of data from badfile

Storing the file contents into a str variable

of size 517 bytes

Calls the dummy_function()

which calls bof()

bof() function uses strcopy to

copy function argument into buffer
BUF_SIZE = 100

11

Reads (up to) 517 bytes of data from badfile

Storing the file contents into a str variable

of size 517 bytes

Calls the dummy_function()

which calls bof()

bof() function uses strcopy to

copy function argument into buffer
BUF_SIZE = 100

There is no check if str is bigger

than the buffer, so buffer overflow

can occur!

12

Reads (up to) 517 bytes of data from badfile

Storing the file contents into a str variable

of size 517 bytes

Calls the dummy_function()

which calls bof()

bof() function uses strcopy to

copy function argument into buffer
BUF_SIZE = 100

There is no check if str is bigger

than the buffer, so buffer overflow

can occur!

buffer is a stack variable, so we

can overwrite other values on the

stack with a buffer overflow!

13

Reads (up to) 517 bytes of data from badfile

Storing the file contents into a str variable

of size 517 bytes

Calls the dummy_function()

which calls bof()

bof() function uses strcopy to

copy function argument into buffer
BUF_SIZE = 100

There is no check if str is bigger

than the buffer, so buffer overflow

can occur!

buffer is a stack variable, so we

can overwrite other values on the

stack with a buffer overflow!

14

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Here is the current stack frame in bof()

We can control the contents of
buffer[] with our badfile

15

THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Here is the current stack frame in bof()

We can control the contents of
buffer[] with our badfile

We can overflow this buffer and

overwrite the contents above it

Badfile =
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAAA
AAAAAAAAAAAAAA

16

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

17

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

Overwriting the return address

with something else can lead to:

Non-existent address

➔CRASH

Access Violation

➔CRASH

Invalid Instruction

➔CRASH

Execution of attacker’s code! ➔Oh no!!

18

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

We can overwrite it, so if it points to the

location of our own code we also inject, it

will execute that code!

19

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

We can overwrite it, so if it points to the

location of our own code we also inject, it

will execute that code!

And our code will ……..

20

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

The juicy piece of information

here in the return address

The program will jump to that address and

continue to execute code

We can overwrite it, so if it points to the

location of our own code we also inject, it

will execute that code!

And our code will get a root shell

(there are many things our code can do, but we will be focused on getting a root shell)

21

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

“badfile”

bof() stack frame (stack.c)

22

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

“badfile”

bof() stack frame (stack.c)

… previous stack frames…

Return Address

buffer[99]

.

.

.

.

.

buffer[0]

THE STACK

Malicious Code

(Overwrite)

New return address

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)
(Overwrite)

(Overwrite)

bof() stack frame (stack.c)

23

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

“badfile”

bof() stack frame (stack.c)

… previous stack frames…

Return Address

buffer[99]

.

.

.

.

.

buffer[0]

/bin/sh

THE STACK

(Overwrite)

New return address

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)
(Overwrite)

(Overwrite)

bof() stack frame (stack.c)

24

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

“badfile”

bof() stack frame (stack.c)

… previous stack frames…

Return Address

buffer[99]

.

.

.

.

.

buffer[0]

/bin/sh

THE STACK

(Overwrite)

New return address

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)
(Overwrite)

(Overwrite)

bof() stack frame (stack.c)Pretty easy, right?

25

Our first buffer overflow attack

sudo sysctl -w kernel.randomize_va_space=0

sudo ln -sf /bin/zsh /bin/sh

(but first we need to change some settings)

• Turn off address randomization (countermeasure) (for now)

• Set /bin/sh to a shell with no RUID != EUID privilege drop countermeasure (for now…)

• Compile a root owned set-uid version of stack.c w/ executable stack enabled + no stack guard

gcc -o stack -z execstack -fno-stack-protector stack.c

sudo chown root stack

sudo chmod 4755 stack

(In the lab, this is already done for you with the makefile)

26

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Step 1

We don’t know where the

return address is… but it

is somewhere on the

stack!

27

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 2: Find the address to place our

malicious shellcode

Step 1

We do not know where

exactly our malicious code is

We only know that our code

we inject gets copied into a
buffer on stack

We do not know the exact memory location of buffer,

because it varies depending on program memory usage

28

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

We do not know where

exactly our malicious code is

We only know that our code

we inject gets copied into a
buffer on stack

We do not know the exact memory location of buffer,

because it varies depending on program memory usage

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0] ???

???

Malicious Code

We do control where in the buffer we

inject our malicious code

29

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

We do not know where

exactly our malicious code is

We only know that our code

we inject gets copied into a
buffer on stack

We do not know the exact memory location of buffer,

because it varies depending on program memory usage

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0] ???

???

Malicious Code

We can get the values for $ebp and $esp to help!

We are going to guess ☺

(sometimes)

30

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Step 1

31

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

$ebp

(This might seem obvious, but often

times we might not know how big

the buffer is!)

Beginning of buffer

32

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

$ebp

Beginning of buffer

Return address =

($ebp – beginning of buffer)+4

+4

33

Our first buffer overflow attack

Malicious Code

Stuff

New return address

Stuff

“badfile”

GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

$ebp

Beginning of buffer

Return address =

($ebp – beginning of buffer)+4

+4

(esp != beginning of the buffer)

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten)
$ebp

We can use gdb to debug and find addresses in memory

Buffer

“badfile”

34

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten)
$ebp

We can use gdb to debug and find addresses in memory

Buffer

“badfile”

35

(clone repository and run make)

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten)
$ebp

We can use gdb to debug and find addresses in memory

Buffer

“badfile”

36

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

Buffer

Prev frame pointer (overwritten) $ebp

Set a breakpoint at bof()

“badfile”

37

Run the command gdb stack-L1-dbg

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

(a lot of output will be displayed here)

“badfile”

38

Our first buffer overflow attack GOAL:

Overflow a buffer to insert code and a new return address

Step 1: Find the offset between the base

of the buffer and the return address
Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

(a lot of output will be displayed here)

Buffer

“badfile”
3. Step into the bof function

39

Step 1: Find the offset between the base
of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

Address of ebp!

Buffer

“badfile”

40

Step 1: Find the offset between the base
of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

Address of buffer!

Buffer

“badfile”

41

Step 1: Find the offset between the base
of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference between ebp and buffer

Our offset!!! (almost)Buffer

“badfile”

42

Step 1: Find the offset between the base
of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference between ebp and buffer

109

We need to add 4 to reach the return address

108 + 4 = 112 is our total offset

Step 1: Find the offset between the base
of the buffer and the return address

Malicious Code

Stuff

New return address

Stuff

“badfile”

Buffer

Prev frame pointer (overwritten) $ebp

1. Set a breakpoint at bof()

2. Run the program until it reaches the breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference between ebp and buffer

109

We need to add 4 to reach the return address

108 + 4 = 112 is our total offset

45

(…)

(…)

1. Set a breakpoint at bof()

2. Run the program

until it reaches the

breakpoint

3. Step into the bof function

4. Find the address of $ebp

5. Find the address of buffer

6. Calculate the difference

between ebp and buffer

TL;DR GDB

46

Step 2: Find the address of our

malicious shellcode

Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten)

112

Stuff

Stuff

???

We are going to guess where our

malicious code is going to be!

47

Step 2: Find the address of our

malicious shellcode

Malicious Code

Stuff

New return address

Stuff

Prev frame pointer (overwritten)

112

Stuff

Stuff

???

We are going to guess where our

malicious code is going to be!

What should our stuff be in

the payload?

Does it matter?

48

Step 2: Find the address of our

malicious shellcode We are going to guess where our

malicious code is going to be!

Let’s guess!

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000

Program crashes!

49

Step 2: Find the address of our

malicious shellcode We are going to guess where our

malicious code is going to be!

Let’s guess!

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000

Program crashes!

50

Step 2: Find the address of our

malicious shellcode We are going to guess where our

malicious code is going to be!

Let’s guess!

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000
Program crashes!

This could potentially go

on for a very long time 

We need a better

approach to guessing!

51

Step 2: Find the address of our

malicious shellcode We are going to guess where our

malicious code is going to be!

Let’s guess!

Malicious Code

0000000000

New return address

0000000000

00000000000

112

00000000000

000000000
Program crashes!

Instead of garbage, we will fill

it with executable instructions

But we don’t want that instruction to do

anything…

52

Step 2: Find the address of our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

00000000000

000000000

0X90

53

Step 2: Find the address of our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

00000000000

000000000

The NOP instruction does

nothing, and the advances to
the next instruction

54

Step 2: Find the address of our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

Incorrect guess, but the program does not crash!

55

Step 2: Find the address of our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

Incorrect guess, but the program does not crash!

NOP advances to the next instruction

This large sequence of

NOPs is called a NOP sled

☺

56

Step 2: Find the address of our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

Next: We need to

construct the contents

of our badfile

57

exploit.py This script will construct our badfile for us!

58

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

59

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

Initially fill entire payload with NOP operators (0x90)

60

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

Initially fill entire payload with NOP operators (0x90)

Place malicious code somewhere in the payload

NOP NOP NOP NOP NOP NOP NOP NOP CODE NOP

400

(This can be many different values, I just arbitrary selected 400)

61

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

Initially fill entire payload with NOP operators (0x90)

Place malicious code somewhere in the payload

NOP NOPNOP NOP NOP NOP NOP CODE NOP

400

(This can be many different values, I just arbitrary selected 400)

Place return address (a guess) at

offset 112

ret

112

62

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

Initially fill entire payload with NOP operators (0x90)

Place malicious code somewhere in the payload

NOP NOPNOP NOP NOP NOP NOP CODE NOP

400

(This can be many different values, I just arbitrary selected 400)

Place return address (a guess) at

offset 112

ret

112

63

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

Initially fill entire payload with NOP operators (0x90)

Place malicious code somewhere in the payload

NOP NOPNOP NOP NOP NOP NOP CODE NOP

400

(This can be many different values, I just arbitrary selected 400)

Place return address (a guess) at

offset 112

ret

112

This is the value of $ebp that you got from the GDB

YOURS MIGHT BE SLIGHTLY
DIFFERENT

64

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

Initially fill entire payload with NOP operators (0x90)

Place malicious code somewhere in the payload

NOP NOPNOP NOP NOP NOP NOP CODE NOP

400

(This can be many different values, I just arbitrary selected 400)

Place return address (a guess) at

offset 112

ret

112

When we debugged with GDB, GDB puts some
information on the stack, which means that the
memory address are slightly different when we

run the program without GDB, so we need to
apply an offset

For most students 200 works, for other 0x78 works

65

exploit.py This script will construct our badfile for us!

Malicious code to be injected (/bin/sh)

(we will talk later about what exactly this is)

Initially fill entire payload with NOP operators (0x90)

Place malicious code somewhere in the payload

NOP NOPNOP NOP NOP NOP NOP CODE NOP

400

(This can be many different values, I just arbitrary selected 400)

Place return address (a guess) at

offset 112

ret

112

66

Conducting our first Buffer Overflow Attack

1. Turn off countermeasures

2. Get offset (step 1) from GDB

Turn off ASLR!
sudo sysctl –w kernel.randomize_va_space=0

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

(Your addresses might slightly be

different, but your offset should still be

108)

3. Update values in exploit.py

4. Run ./exploit.py to fill contents of badfile

5. Run the vulnerable program

ROOT SHELL!!

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3: Stack and Function Invocation
	Slide 4: THE STACK
	Slide 5: THE STACK
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: THE STACK
	Slide 15: THE STACK
	Slide 16: THE STACK
	Slide 17: THE STACK
	Slide 18: THE STACK
	Slide 19: THE STACK
	Slide 20: THE STACK
	Slide 21: THE STACK
	Slide 22: THE STACK
	Slide 23: THE STACK
	Slide 24: THE STACK
	Slide 25: Our first buffer overflow attack
	Slide 26: GOAL: Overflow a buffer to insert code and a new return address
	Slide 27: GOAL: Overflow a buffer to insert code and a new return address
	Slide 28: GOAL: Overflow a buffer to insert code and a new return address
	Slide 29: GOAL: Overflow a buffer to insert code and a new return address
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Our first buffer overflow attack
	Slide 35: Our first buffer overflow attack
	Slide 36: Our first buffer overflow attack
	Slide 37: Our first buffer overflow attack
	Slide 38: Our first buffer overflow attack
	Slide 39: Our first buffer overflow attack
	Slide 40: Step 1: Find the offset between the base
	Slide 41: Step 1: Find the offset between the base
	Slide 42: Step 1: Find the offset between the base
	Slide 43: Step 1: Find the offset between the base
	Slide 44: Step 1: Find the offset between the base
	Slide 45: 1. Set a breakpoint at bof()
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: exploit.py
	Slide 58: exploit.py
	Slide 59: exploit.py
	Slide 60: exploit.py
	Slide 61: exploit.py
	Slide 62: exploit.py
	Slide 63: exploit.py
	Slide 64: exploit.py
	Slide 65: exploit.py
	Slide 66: Conducting our first Buffer Overflow Attack

