
CSCI 476: Computer Security
Buffer Overflow Attack (Part 3)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1*all images are stolen from the internet

Shellcode, Bypassing Countermeasures

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcements

Lab 2 (Shellshock) due on Sunday 2/19
• Updated instructions for task 5

Lab 3 (Buffer Overflow) will be posted sometime in

the next few days. Won’t be due until March 4th

No class on Monday

Have a good weekend ☺

3

THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

Malicious Code

Stuff

New return address

Stuff

“badfile”

bof() stack frame (stack.c)

… previous stack frames…

Return Address

buffer[99]

.

.

.

.

.

buffer[0]

/bin/sh

THE STACK

(Overwrite)

New return address

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)

(Overwrite)
(Overwrite)

(Overwrite)

bof() stack frame (stack.c)

4

Step 2: Find the address of our

malicious shellcode

Malicious Code

0000000000

New return address

0000000000

00000000000

00000000000

000000000

The NOP instruction does

nothing, and the advances to
the next instruction

5

Step 2: Find the address of our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

There are two important values we

need in a buffer overflow attack

1. The address of the return address

2. The memory address of our

malicious code that we put as the

new return address

1

2

6

Step 2: Find the address of our

malicious shellcode

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

Guess!

There are two important values we

need in a buffer overflow attack

1. The address of the return address

2. The memory address of our

malicious code that we put as the

new return address

1

2

We found the location of the

return address (relative to the
buffer), by using gdb

For the memory address of our

malicious code, we made a guess
(somewhere above ebp), and

hope it lands somewhere in our
NOP sled

$ebp

7

exploit.py This script will construct our badfile for us!

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517

This script build constructs a

python list, and writes out the
list to badfile

400

start will determine where in the list the malicious code will be inserted

8

exploit.py This script will construct our badfile for us!

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517

This script build constructs a

python list, and writes out the
list to badfile

400

ret is the value we put at the return address (our guess!!)

0xffffcb08 = address of $ebp

200 = GDB offset

9

exploit.py This script will construct our badfile for us!

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517

This script build constructs a

python list, and writes out the
list to badfile

400

offset is where in our list we place the return address (ret)

0xffffcb08 = address of $ebp

200 = GDB offset

112

10

exploit.py This script will construct our badfile for us!

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517

This script build constructs a

python list, and writes out the
list to badfile

400112

We have some wiggle room with our guess, we can make it slightly bigger or smaller and our attack will still work

0xfffcb28

Our guess still lands in the NOP sled, so we are good!

11

exploit.py This script will construct our badfile for us!

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517

This script build constructs a

python list, and writes out the
list to badfile

450112

We have some wiggle room with where we place our malicious code, we can make it slightly bigger or

smaller and our attack will still work

0xfffcb28

Our guess still lands in the NOP sled, so we are good!

450

12

exploit.py This script will construct our badfile for us!

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517

This script build constructs a

python list, and writes out the
list to badfile

500112

We cant go too far, otherwise it will not be read by badfile (the vulnerable program only reads up to 517 bytes)

0xfffcb28

Our attack no longer works, because our payload got cut off

500

Malicious code

that will not be

read in by badfile

13

exploit.py This script will construct our badfile for us! This script build constructs a

python list, and writes out the
list to badfile

We can’t guess too far, otherwise we won’t hit our NOP sled

0xfffffff

Our attack no longer works, because our NOP sled never hits the malicious code

400

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517400112

14

exploit.py This script will construct our badfile for us! This script build constructs a

python list, and writes out the
list to badfile

We can’t guess too far, otherwise we won’t hit the correct NOP sled

0xfffffff

This also won’t work, because our NOP sled never hits the malicious code

400

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517400112

15

exploit.py This script will construct our badfile for us! This script build constructs a

python list, and writes out the
list to badfile

We can’t guess too far, otherwise we might hit somewhere in the middle of our malicious code

0xfffffff

This also won’t work, because the start of malicious code is never executed (and thus errors will occur)

400

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517400112

16

exploit.py This script will construct our badfile for us! This script build constructs a

python list, and writes out the
list to badfile

We must be exactly correct with the location of the return address

This also won’t work, because the return address is invalid

NOP NOP NOP NOP NOPNOP CODEret NOP NOP NOP NOPNOP NOP NOP NOP

0 517400104

100

NOPNOP

= true return address location

r
e
t

N
O
P

Invalid return

address → CRASH

17

Conducting our first Buffer Overflow Attack

1. Turn off countermeasures

2. Get offset (step 1) from GDB

Turn off ASLR!
sudo sysctl –w kernel.randomize_va_space=0

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

(Your addresses might slightly be

different, but your offset should still be

108)

3. Update values in exploit.py

4. Run ./exploit.py to fill contents of badfile

5. Run the vulnerable program

ROOT SHELL!!

18

Shellcode

This is the code we are executing

What does this mean?

19

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

20

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

Compile and copy/paste it into our badfile!!

(Run demo)

21

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

Compile and copy/paste it into our badfile!!Compile and copy/paste it into our badfile!!

Problem: Compiling adds on a lot of junk into our program that will give us issues

(If our malicious code is too big, the entire thing might not be placed on the stack)

22

Shellcode

This is the code we want to inject

We need this program as executable

instructions (binary)

How could we get the binary instructions for this?

Compile and copy/paste it into our badfile!!Compile and copy/paste it into our badfile!!

Problem: Compiling adds on a lot of junk into our program that will give us issues

(If our malicious code is too big, the entire thing might not be placed on the stack)

(When compiled, this program is about 15,000 bytes in size)

Bad!!!

23

Shellcode

Shellcode is a compact, minimal set

of binary instructions to do some

malicious task

MUCH smaller in size, and it still does the exact same thing!!

Often times in our payloads, we might not be

able to fit an entire compiled program, so we

have to write it to be much more compact

24

Shellcode execve is a system call!

execve will look in certain

registers for which command

to execute

25

Shellcode

execve is a system call!

execve will look in certain

registers for which command

to execute

New Goal: Write the assembly instructions for loading the

correct arguments into registers, and then calling exec!

26

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

➔execve(“/bin/sh”, argv, 0)

27

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

➔execve(“/bin/sh”, argv, 0)

1. Load the registers

EAX

EBX

ECX

EDX

= 0x0000000b (11)

= address of “/bin/sh” string

= address of argv array

= 0

28

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

➔execve(“/bin/sh”, argv, 0)

1. Load the registers

EAX

EBX

ECX

EDX

= 0x0000000b (11)

= address of “/bin/sh” string

= address of argv array

= 0

2. Invoke the syscall!! ➔ Int 0x80

29

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

➔execve(“/bin/sh”, argv, 0)

(you wont need to write shellcode, but it is important to know what it is doing☺)

30

Shellcode
New Goal: Write the assembly instructions for

loading the correct arguments into registers, and

then calling exec!

➔execve(“/bin/sh”, argv, 0)

(you wont need to write shellcode, but it is important to know what it is doing☺)

tl;dr The shellcode in our payload

1. Loads the registers with he correct values

2. Calls the execve() system call to create a shell

31

Defeating Countermeasures

32

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

What did we do previously to get past this?

33

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

What did we do previously to get past this?

Linked /bin/sh to a different shell (zsh) !

link /bin/sh to /bin/zsh (no setuid countermeasure)
sudo ln -sf /bin/zsh /bin/sh

34

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Let’s turn on this countermeasure and see what happens

35

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Let’s turn on this countermeasure and see what happens

We still get a shell, but not a root shell. A SERIOUS DOWNGRADE

36

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Any ideas for how we can bypass this?

(Hint: it involves adding some code to our shellcode)

37

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Any ideas for how we can bypass this?

Solution: run the command setuid(0) in our shellcode before running /bin/sh

38

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Any ideas for how we can bypass this?

Solution: run the command setuid(0) in our shellcode before running /bin/sh

setuid(0) will set the process’s user ID’s to 0 (root), so now RUID == EUID

39

Countermeasure #1: Dash Secure Shell

On the VM, /bin/sh points to a secure shell, /bin/dash, which has a countermeasure

It drops root privileges if RUID != EUID when being executed inside a setuid process

Any ideas for how we can bypass this?

Solution: run the command setuid(0) in our shellcode before running /bin/sh

setuid(0) will set the process’s user ID’s to 0 (root), so now RUID == EUID

Shellcode that

1. Loads the registers

2. Calls the setuid() system call

40

Countermeasure #1: Dash Secure Shell

To bypass /dash/, we add shellcode that sets the real user uid of the process to be 0 (root)

setuid(0)

execve(/bin/sh)

We got our root shell back!!

41

Countermeasure #2: ASLR

ASLR = Randomize the start location of the stack, heap, libs, etc

(address space layout randomization)

• This makes guessing stack

addresses more difficult!

42

Countermeasure #2: ASLR (address space layout randomization)

When we turn on this countermeasure, our attack now fails

The address of the buffer we got from GDB is no longer accurate, because

the address of buffer changes every time the program is run

43

Countermeasure #2: ASLR (address space layout randomization)

ASLR in action

44

Countermeasure #2: ASLR (address space layout randomization)

The stack now starts at a random spot every time that we run ./stack-L1

Any ideas how we can bypass this countermeasure ???

45

Countermeasure #2: ASLR (address space layout randomization)

The stack now starts at a random spot every time that we run ./stack-L1

Any ideas how we can bypass this countermeasure ???

0 0 0 0 0 0 1 0 0 0

Suppose you are trying to find a 1 in an array of 0s. The 1 will be at a random spot every time

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

You must find this 1, otherwise

the world will end, you have

unlimited tries, what do you do??

46

Countermeasure #2: ASLR (address space layout randomization)

The stack now starts at a random spot every time that we run ./stack-L1

Any ideas how we can bypass this countermeasure ???

0 0 0 0 0 0 1 0 0 0

Suppose you are trying to find a 1 in an array of 0s. The 1 will be at a random spot every time

0 1 0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0 0 0

You must find this 1, otherwise

the world will end, you have

unlimited tries, what do you do??

Just keep running guessing until

you get it right

47

Countermeasure #2: ASLR (address space layout randomization)

Let’s make a guess (0xffffcb18 + 200), and let's run the program over and over again until our guess works

Code

Ret

Heap

Libs

Stack

48

Countermeasure #2: ASLR (address space layout randomization)

Let’s make a guess (0xffffcb18 + 200), and let's run the program over and over again until our guess works

Code

Ret

Heap

Libs

Stack

Code

Ret

Heap

Libs

Stack

49

Countermeasure #2: ASLR (address space layout randomization)

Let’s make a guess (0xffffcb18 + 200), and let's run the program over and over again until our guess works

Code

Ret

Heap

Libs

Stack

Code

Ret

Heap

Libs

Stack

Code

Ret

Heap

Libs

50

Countermeasure #2: ASLR (address space layout randomization)

Let’s make a guess (0xffffcb18 + 200), and let's run the program over and over again until our guess works

Code

Ret

Heap

Libs

Stack

Code

Ret

Heap

Libs

Stack

Code

Ret

Heap

Libs

Heap

Libs

Code

Ret

Stack

51

Countermeasure #2: ASLR (address space layout randomization)

On Linux 32 based systems, the base stack address

can have 2^19 = 524, 288 possible addresses

Is this brute force-able ?

52

Countermeasure #2: ASLR (address space layout randomization)

On Linux 32 based systems, the base stack address

can have 2^19 = 524, 288 possible addresses

Is this brute force-able ?

53

Countermeasure #2: ASLR (address space layout randomization)

We are going to guess (a lot!!!) and hope that we eventually get lucky

54

Countermeasure #2: ASLR (address space layout randomization)

We are going to guess (a lot!!!) and hope that we eventually get lucky

After 32 seconds, I got a root shell

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3: THE STACK
	Slide 4
	Slide 5
	Slide 6
	Slide 7: exploit.py
	Slide 8: exploit.py
	Slide 9: exploit.py
	Slide 10: exploit.py
	Slide 11: exploit.py
	Slide 12: exploit.py
	Slide 13: exploit.py
	Slide 14: exploit.py
	Slide 15: exploit.py
	Slide 16: exploit.py
	Slide 17: Conducting our first Buffer Overflow Attack
	Slide 18: Shellcode
	Slide 19: Shellcode
	Slide 20: Shellcode
	Slide 21: Shellcode
	Slide 22: Shellcode
	Slide 23: Shellcode
	Slide 24
	Slide 25
	Slide 26: Shellcode
	Slide 27
	Slide 28: Shellcode
	Slide 29
	Slide 30
	Slide 31: Defeating Countermeasures
	Slide 32: Countermeasure #1: Dash Secure Shell
	Slide 33: Countermeasure #1: Dash Secure Shell
	Slide 34: Countermeasure #1: Dash Secure Shell
	Slide 35: Countermeasure #1: Dash Secure Shell
	Slide 36: Countermeasure #1: Dash Secure Shell
	Slide 37: Countermeasure #1: Dash Secure Shell
	Slide 38: Countermeasure #1: Dash Secure Shell
	Slide 39: Countermeasure #1: Dash Secure Shell
	Slide 40: Countermeasure #1: Dash Secure Shell
	Slide 41: Countermeasure #2: ASLR
	Slide 42: Countermeasure #2: ASLR
	Slide 43: Countermeasure #2: ASLR
	Slide 44: Countermeasure #2: ASLR
	Slide 45: Countermeasure #2: ASLR
	Slide 46: Countermeasure #2: ASLR
	Slide 47: Countermeasure #2: ASLR
	Slide 48: Countermeasure #2: ASLR
	Slide 49: Countermeasure #2: ASLR
	Slide 50: Countermeasure #2: ASLR
	Slide 51: Countermeasure #2: ASLR
	Slide 52: Countermeasure #2: ASLR
	Slide 53: Countermeasure #2: ASLR
	Slide 54: Countermeasure #2: ASLR

