
CSCI 476: Computer Security
Buffer Overflow Attack (Part 4)

Reese Pearsall
Spring 2023
https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html 1*all images are stolen from the internet

Bypassing Countermeasures, Return to Lib-C

https://www.cs.montana.edu/pearsall/classes/spring2023/476/main.html

2

Announcements

Lab 3 (Buffer Overflow) Due Sunday March 5th @

11:59 PM

On Monday I will Discuss the Project

Next Friday (3/3) will be a work day for lab 3

My child will safely

copy strings inside

of a C function

strcpy()

3

Defeating Countermeasures

4

Buffer Overflow Countermeasures

• Non executable stack

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

5

Countermeasure #1: Dash Secure Shell

To bypass /dash/, we add shellcode that sets the real user uid of the process to be 0 (root)

setuid(0)

execve(/bin/sh)

We got our root shell back!!

6

Buffer Overflow Countermeasures

• Non executable stack

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

Bypass: Add shellcode to our payload the sets RUID = 0

7

Countermeasure #2: ASLR

ASLR = Randomize the start location of the stack, heap, libs, etc

(address space layout randomization)

• This makes guessing stack

addresses more difficult!

8

Countermeasure #2: ASLR (address space layout randomization)

We are going to guess (a lot!!!) and hope that we eventually get lucky

After 32 seconds, I got a root shell

!!! Endpoints might have additional Brute-Force countermeasures active

9

Buffer Overflow Countermeasures

• Non executable stack

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

Bypass: Add shellcode to our payload the sets RUID = 0

Bypass: Brute-Force / Wait to get lucky

10

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

Places a special value (guard)

between the return

address/previous frame pointer and

local function values

When the function finishes,

and the OS sees that the

stack guard has ben

overwritten, the program

aborts and does not

proceed

11

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

Compile with stack guard turned off:

We overflowed the array!

12

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

Compile with stack guard turned off:

We overflowed the array!

Compile with stack guard turned on:

Aborted when we pass the stack guard

13

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard (45)

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

How is stack guard implemented?

Stack Canary Value: 45

Somewhere else in

Memory (not on stack)

The compiler places a secret value (a stack canary)

at the stack guard memory location, and in a safe

location off the stack

14

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard (45)

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

How is stack guard implemented?

Stack Canary Value: 45

Somewhere else in

Memory (not on stack)

The compiler places a secret value (a stack canary)

at the stack guard memory location, and in a safe

location off the stack

When the function finishes, check the stack canary value.

• If the stack canary on the stack has not been

modified, then no buffer overflow has occurred

15

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard (45)

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

How is stack guard implemented?

Stack Canary Value: 45

Somewhere else in

Memory (not on stack)

The compiler places a secret value (a stack canary)

at the stack guard memory location, and in a safe

location off the stack

When the function finishes, check the stack canary value.

• If the stack canary on the stack has not been

modified, then no buffer overflow has occurred

• If the stack canary on the stack has been modified,

then our stack guard has been overwritten–

Potential overflow detected! Abort

NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP

16

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard (45)

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

How is stack guard implemented?

Stack Canary Value: 45

Somewhere else in

Memory (not on stack)

The compiler places a secret value (a stack canary)

at the stack guard memory location, and in a safe

location off the stack

When the function finishes, check the stack canary value.

• If the stack canary on the stack has not been

modified, then no buffer overflow has occurred

• If the stack canary on the stack has been modified,

then our stack guard has been overwritten–

Potential overflow detected! Abort

NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP
NOP NOP NOP

The insertion, checking, and aborting for stack guard/canary is done for us in the Function Prologue and Epilogue!

17

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard (45)

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

Stack Canary Value: 45

Somewhere else in

Memory (not on stack)

How to bypass stack guard?

18

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard (45)

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

Stack Canary Value: 45

Somewhere else in

Memory (not on stack)

How to bypass stack guard?

We won’t discuss

these techniques in

this class, as they

involve some

advanced memory

manipulation and

magic, but just know

that techniques to

bypass stack guard

exist ☺

19

Stack Guard
THE STACK

… previous stack frames…

Arguments

Return Address

Previous frame pointer

Guard (45)

buffer[99]

.

.

.

.

.

buffer[0]

Compiler Countermeasure***

Stack Canary Value: 45

Somewhere else in

Memory (not on stack)

How to bypass stack guard?

We won’t discuss

these techniques in

this class, as they

involve some

advanced memory

manipulation and

magic, but just know

that techniques to

bypass stack guard

exist ☺

20

Buffer Overflow Countermeasures

• Non executable stack

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

Bypass: Add shellcode to our payload the sets RUID = 0

Bypass: Brute-Force / Wait to get lucky

Bypass: Don’t worry about it (advanced memory manipulation, PRNG manipulation)

21

Non-Executable Stack

In a normal program, executable code is

not put on the stack

Non-Executable Stack: Writeable areas of

program data & are not executable

THE STACK

Malicious Code

NOP NOP NOP ONP

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

22

Non-Executable Stack

Non-Executable Stack: Writeable areas of

program data & are not executable

THE STACK

Malicious Code

NOP NOP NOP ONP

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

This does not prevent buffer overflow, however

Instead of injecting our own code, we could….

23

Non-Executable Stack

Non-Executable Stack: Writeable areas of

program data & are not executable

THE STACK

Malicious Code

NOP NOP NOP ONP

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

This does not prevent buffer overflow, however

Instead of injecting our own code, jump to existing code

Which existing code?

24

Non-Executable Stack

Instead of injecting our own code,

we will jump to existing code

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

………

25

Non-Executable Stack

Instead of injecting our own code,

we will jump to existing code

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

26

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

Construct Payload using

code and data that is

already on the system

(Bypass for non-executable stack)

27

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

General Plan of Attack for Return-to-Lib

1. Find address of system()

➢ Overwrite the return address with system()’s address

2. Find the address of the “/bin/sh” string

➢ To get system() to run this command

3. Construct arguments for system()

➢ To find the location in the stack to place the address to the “/bin/sh” string (arg for system())

Goal: Run the command

system(“bin/sh”)

28

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

General Plan of Attack for Return-to-Lib

1. Find address of system()

➢ Overwrite the return address with system()’s address

Goal: Run the command

system(“bin/sh”)

29

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

General Plan of Attack for Return-to-Lib

1. Find address of system()

➢ Overwrite the return address with system()’s address

Goal: Run the command

system(“bin/sh”)

This can be found by using gdb

30

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

General Plan of Attack for Return-to-Lib

1. Find address of system()

➢ Overwrite the return address with system()’s address

Goal: Run the command

system(“bin/sh”)

2. Find the address of the “/bin/sh” string
➢ To get system() to run this command

31

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

General Plan of Attack for Return-to-Lib

1. Find address of system()

➢ Overwrite the return address with system()’s address

Goal: Run the command

system(“bin/sh”)

2. Find the address of the “/bin/sh” string
➢ To get system() to run this command

We can define an environment variable that has the value “bin/sh”

The environment variable gets loaded into the program and placed onto the stack

32

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

General Plan of Attack for Return-to-Lib

1. Find address of system()

➢ Overwrite the return address with system()’s address

Goal: Run the command

system(“bin/sh”)

2. Find the address of the “/bin/sh” string
➢ To get system() to run this command

33

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

General Plan of Attack for Return-to-Lib

1. Find address of system()

➢ Overwrite the return address with system()’s address

Goal: Run the command

system(“bin/sh”)

➢ To get system() to run this command

3. Construct arguments for system()

➢ To find the location in the stack to place the address to the “/bin/sh” string (arg for system())

**We also need to find the address for the exit() function so the original process can terminate gracefully

Remember that
system(“/bin/ls”)

will fork and spawn a new

process

/bin/sh

./stack

./stack

exit()

2. Find address of “/bin/sh” string

34

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

Goal: Run the command

system(“bin/sh”)

In this example, we are only chaining two functions

together, but we can generalize this to chain

multiple function calls

ex. bof() → setuid(0) → /bin/sh → exit

35

Return-to-libc Attack

Arguments

Return Address

Previous frame pointer

Libc Shared Library

Printf

fopen

Malloc

…

system()

(Bypass for non-executable stack)

Goal: Run the command

system(“bin/sh”)

In this example, we are only chaining two functions

together, but we can generalize this to chain

multiple function calls

ex. bof() → setuid(0) → /bin/sh → exit

(This attack is much more complicated

than a normal BOF attack, and we

won’t cover it in this class)

36

Buffer Overflow Countermeasures

• Non executable stack

• Safe Shell (/bin/dash)

• Address space layout randomization (ASLR)

• Stack Guard

Bypass: Add shellcode to our payload the sets RUID = 0

Bypass: Brute-Force / Wait to get lucky

Bypass: Don’t worry about it (advanced memory manipulation, PRNG manipulation)

Bypass: Return-to-libc, Return-Oriented Programming (ROP)

37

“What ifs”

In our basic buffer overflow attack (stack.c), we have the

privilege of having important information that made our

attack much easier

• Size of buffer

• Location of buffer

• Location of EBP

Let’s look at a scenario where we don’t know some of this information

38

Unknown Buffer Size THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[???]

The size of the buffer is important, because we need

it in order to determine where to place the new return

address

39

Unknown Buffer Size THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[???]

The size of the buffer is important, because we need

it in order to determine where to place the new return

address

Solution: Instead of placing the new return

address at one specific, let’s place it at many

locations, and hopefully one of the locations works

40

Unknown Buffer Size THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[???]

The size of the buffer is important, because we need

it in order to determine where to place the new return

address

Solution: Instead of placing the new return

address at one specific, let’s place it at many

locations, and hopefully one of the locations works

This process is known as Address Spraying

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

From the program’s behavior, we might be able

to derive a range of possible buffer sizes, so

place the same return address at all possible

return address locations

41

Unknown Buffer Location THE STACK

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

The location of the buffer is important, because we

need it in order to determine where to place the new

return address

We also used the buffer location in order figure out

what our guess should be, so now we need to figure

out what we should guess

Suppose that we do know the range of possible

starting locations [A, A + 100]

42

Unknown Buffer Location

The location of the buffer is important, because we

need it in order to determine where to place the new

return address

Solution: We will still use address spraying, but now we need to

derive the possible location(s) of our NOP sled

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

Buffer Address NOP Section

A [A + 120, A +270]

A + 4 [A + 124, A +274]

A + 8 [A + 128, A +278]

…

A + 100 [A + 220, A +370]

If we know we insert 150 bytes of NOPs after the return

address, we can iterate through all possible locations of

our NOP sled

43

Unknown Buffer Location

Malicious Code

NOP NOP NOP NOP NOP NOP

New return address

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

New Return Address

Buffer Address NOP Section

A [A + 120, A +270]

A + 4 [A + 124, A +274]

A + 8 [A + 128, A +278]

…

A + 100 [A + 220, A +370]

Try to find a NOP

section range

that will work for

ALL values of A

44

Small Buffer Size

In a buffer of 517, we can fit quite a lot of stuff in

our payload,

But what if the buffer is small, or if we are not

allowed to overflow into other stack frames ?

BOF’s Stack Frame

Important Function’s
Stack Frame

Main() Stack Frame

buffer[99]

.

.

.

.

.

buffer[0]

… previous stack frames…

Arguments

Return Address

Previous frame pointer

buffer[99]

.

.

.

.

.

buffer[0]

buffer[99]

In 64-bit systems, we are not able to

overflow stuff after the return address

Malicious Code

New Return Address
NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP

NOP NOP NOP NOP NOP NOP
NOP NOP NOP NOP NOP NOP

So, our malicious code needs to be injected

below the return address, and have much less

space to work with

45

Small Buffer Size

In a buffer of 517, we can fit quite a lot of stuff in our

payload,

But what if the buffer is small, or if we are not

allowed to overflow into other stack frames ?

BOF’s Stack Frame

Important Function’s
Stack Frame

Main() Stack Frame

NOP
NOP
NOP
NOP

Malicious Code

46

Small Buffer Size

In a buffer of 517, we can fit quite a lot of stuff in our

payload,

But what if the buffer is small, or if we are not

allowed to overflow into other stack frames ?

BOF’s Stack Frame

Important Function’s
Stack Frame

Main() Stack Frame

NOP
NOP
NOP
NOP

Malicious Code

Solution: Place the

malicious code in

another stack frame

(As long as we can figure out its address, we really do not care if the malicious code is in the BOF stack frame)

47

Lessons Learned?

48

Lessons Learned

Security Principle #3

Address spaces for processes should be isolated from one another,

and there should be no interference between two address spaces

Process D B
u

ffe
r

Process A

O
verflo

w

49

Lessons Learned

Security Principle #4

In a process or system FAILS for whatever reason, it will default to a

SAFE outcome (Think Stack Guard)

50

Lab 3

	Slide 1: CSCI 476: Computer Security
	Slide 2
	Slide 3: Defeating Countermeasures
	Slide 4: Buffer Overflow Countermeasures
	Slide 5: Countermeasure #1: Dash Secure Shell
	Slide 6: Buffer Overflow Countermeasures
	Slide 7: Countermeasure #2: ASLR
	Slide 8: Countermeasure #2: ASLR
	Slide 9: Buffer Overflow Countermeasures
	Slide 10: Stack Guard
	Slide 11: Stack Guard
	Slide 12: Stack Guard
	Slide 13: Stack Guard
	Slide 14: Stack Guard
	Slide 15: Stack Guard
	Slide 16: Stack Guard
	Slide 17: Stack Guard
	Slide 18: Stack Guard
	Slide 19: Stack Guard
	Slide 20: Buffer Overflow Countermeasures
	Slide 21: Non-Executable Stack
	Slide 22: Non-Executable Stack
	Slide 23: Non-Executable Stack
	Slide 24: Non-Executable Stack
	Slide 25: Non-Executable Stack
	Slide 26: Return-to-libc Attack
	Slide 27: Return-to-libc Attack
	Slide 28: Return-to-libc Attack
	Slide 29: Return-to-libc Attack
	Slide 30: Return-to-libc Attack
	Slide 31: Return-to-libc Attack
	Slide 32: Return-to-libc Attack
	Slide 33: Return-to-libc Attack
	Slide 34: Return-to-libc Attack
	Slide 35: Return-to-libc Attack
	Slide 36: Buffer Overflow Countermeasures
	Slide 37: “What ifs”
	Slide 38: Unknown Buffer Size
	Slide 39: Unknown Buffer Size
	Slide 40: Unknown Buffer Size
	Slide 41: Unknown Buffer Location
	Slide 42: Unknown Buffer Location
	Slide 43: Unknown Buffer Location
	Slide 44: Small Buffer Size
	Slide 45: Small Buffer Size
	Slide 46: Small Buffer Size
	Slide 47
	Slide 48: Address spaces for processes should be isolated from one another, and there should be no interference between two address spaces
	Slide 49
	Slide 50

